
DRAWING GRAPHS WITH GRAPHIC

by

Rachel L. Bood

Thesis submitted in partial fulfillment of the

requirements for the Degree of

Bachelor of Science with

Honours in Computer Science

Acadia University

January 2016

© Copyright by Rachel L. Bood, 2016

ii

This thesis by Rachel L. Bood

is accepted in its present form by the

School of Computer Science

as satisfying the thesis requirements for the degree of

Bachelor of Science with Honours

Approved by the Thesis Supervisor

Dr. Jim Diamond Date

Approved by the Director of the School

Dr. Darcy Benoit Date

Approved by the Honours Committee

Dr. Anna Redden Date

iii

iv

I, Rachel L. Bood, grant permission to the University Librarian at Acadia
University to reproduce, loan, or distrubute copies of my thesis in microform, paper

or electronic formats on a non-profit basis. I, however, retain the copyright
in my thesis.

Signature of Author

Date

v

vi

Acknowledgements

I would like to thank my supervisor, Dr. Jim Diamond, for the patient guidance,

encouragement and advice he has provided throughout my time as his student. He

has been a great mentor and friend and I have learned so much from him during my

years at Acadia. I would also like to thank all the members of staff at Jodrey School

of Computer Science who have also helped me during the years of my Computer

Science degree. Finally, I’d like to express my gratitude for my friends and family

who experienced all of the ups and downs of my studies and helped me keep things

in perspective.

vii

viii

Contents

Abstract xvii

1 Introduction 1

1.1 Grapha . 4

1.2 Graph Drawing Software . 8

1.2.1 yED . 10

1.2.2 Tulip . 10

1.2.3 Meurs Challenger . 11

1.2.4 Microsoft Research AGL . 11

1.2.5 BioFabric . 14

1.3 The Goal . 14

2 Requirements 17

2.1 Grapha Walkthrough . 17

2.1.1 Select a Graph . 17

2.1.2 Edit a Graph . 18

2.1.3 Saving and Loading Graphs 19

2.1.4 Combining Graphs . 20

2.2 Improvements . 22

2.2.1 Graphs . 22

2.2.2 Attributes of a Graph . 23

2.3 File Output Formats . 23

2.4 Joining Graphs . 23

ix

2.5 Graphical User Interface . 23

2.6 Additional Features . 24

2.6.1 Freestyle Graph Creation . 24

2.6.2 Graph Editing . 25

2.6.3 Graph Component Deletion 25

3 Design 27

3.1 Language Choices . 27

3.1.1 C++ . 28

3.1.2 Qt Creator . 28

3.2 Review of Grapha’s Design . 29

3.2.1 Grapha.html . 29

3.2.2 Graph.js . 30

3.2.3 UserInteraction.js . 30

3.2.4 SaveLoadDelete.js . 30

3.2.5 RenderConnect.js . 30

3.2.6 Outputs.js . 31

3.2.7 Objects.js . 31

3.2.8 HelperFunctions.js . 31

3.2.9 GraphTypes.js . 31

3.3 Redesign . 31

3.3.1 User Interface . 31

3.3.2 Pre-defined Graphs . 32

3.3.3 Attributes of a Graph . 32

3.3.4 User Modes . 33

Join Mode . 33

Delete Mode . 34

Edit Mode . 34

Freestyle Mode . 34

Drag Mode . 34

3.3.5 Graphic Classes . 34

x

Node Class . 34

Edge Class . 35

Label Class . 35

Graph Class . 36

Preview Class . 36

CanvasView Class . 36

4 Implementation 37

4.1 MainWindow Class . 37

4.2 Graphic Classes . 41

4.2.1 QGraphicsView Class . 41

4.2.2 QGraphicsScene Class . 41

4.2.3 QGraphicsItem Class . 42

Node Class . 42

Edge Class . 42

Label Class . 43

Graph Class . 43

4.3 BasicGraphs Class . 43

4.4 Features Added During Development 44

4.4.1 Undo Node Move Features . 45

4.4.2 Snap-to-Grid Feature . 45

4.4.3 Editing Individual Nodes and Edges on Canvas 45

4.5 Challenges During Development . 45

4.5.1 Screen Resolution and Measurements 45

4.5.2 Widget Styles across Operating Systems 46

4.5.3 File Browser differences . 46

5 Software 49

5.1 Overview of Graphic’s User Interface 49

5.1.1 Graph Input Fields . 51

5.1.2 Node and Edge Input Fields 51

5.2 Create and Customize Graphs . 52

xi

5.2.1 Freestyle Mode . 52

5.2.2 Join Mode . 52

5.2.3 Delete Mode . 53

5.2.4 Edit Mode . 53

5.2.5 Drag Mode . 53

5.3 Save and Load Graphs . 53

6 Conclusion and Further Work 55

6.1 Future Work . 55

6.1.1 Fixes . 55

6.1.2 Improvements . 56

6.2 Conclusion . 56

Bibliography 59

xii

List of Tables

1.1 A table representing friendships between individuals 2

1.2 Programs and their capabilities . 9

xiii

xiv

List of Figures

1.1 Example of mock data displaying a correlation between years of edu-

cation and additional income above the average salary. 1

1.2 A graph representing the data from Table 1.1 3

1.3 Two drawings of the same graph, one asymmetrical and one symmetrical 3

1.4 Two graphs, a left graph is drawn with bends in the edges while the

graph on the right is drawn without bends. 4

1.5 A drawing of a bipartite graph (left) and a grid graph (right). 4

1.6 Make New Graphs tab . 6

1.7 Edit Basic Graphs tab . 6

1.8 Combine Saved Graphs tab . 7

1.9 Edit Combined Graphs tab . 7

1.10 Save Load and Delete tab . 8

1.11 The interface of yED displaying an automatically generated binary tree

graph (left) and a manually created Petersen graph (right). 10

1.13 Output of Meurs Challenger. Although difficult to interprete due

to the density of the graph, the nodes represent actors while the edges

(drawn in very fine coloured lines) represent movies actors have starred

in together. 11

1.12 Tulip’s user interface and sample output 12

1.14 Output of AGL. 13

1.15 A example of how the program Biofabric models a graph’s nodes and

edges. 14

xv

2.1 In the Make New Graphs tab the Petersen graph has been selected to

be drawn with “small” nodes. 18

2.2 In the Edit Basic Graphs tab the Petersen Graph is drawn with a

rotation of 10 degrees. The nodes and edges have been assigned labels

and weights respectively. 19

2.3 The Save, Load, and Delete Graphs tab displaying the saving, load-

ing and deleting features of Grapha 20

2.4 In the Combine Saved Graphs tab the Petersen graph constructed in

Figure 2.2 is to be combined with a Cycle graph at vertices V6 and V4. 21

2.5 In the Edit Combined Graphs tab the graphs in Figure 2.4 have been

combined. 22

2.6 An example of a basic graph (left) and a compound graph (right). The

compound graph is made up of two basic graphs: a star and a bipartite

graph. 24

3.1 Examples of various Qt Widgets [7] 29

3.2 Additional graphs to be included in Graphic. From left to right: Grid

(G3), Helm (H3), Crown (R3), Prism (Y3), Anti-prism (A3), Gear (G3),

Dutch Windmill (D6
3) . 33

4.1 A cycle graph with five nodes (C5) 38

5.1 Graphic user interface. 50

xvi

Abstract

In the field of Graph Theory, graphs are abstract representations used to show re-

lationships (or connections) between objects. The objects are represented as nodes

and the relationships between the entities are known as edges. Although graphs are

abstract mathematical objects, it is common to use graph drawings to visualize the

information they contain; in graph drawings lines symbolize edges while circles or el-

lipses illustrate nodes. Graphs are used frequently in documents and presentations to

provide a visual aid when describing correlations and relationships between objects.

There are few tools available that generate graph drawings. These tools are either

too simple and provide few or no features to output a graph, or are too powerful and

complex for the average user. Hence a graph drawing tool called Grapha was created

to fill this niche. Grapha is a simple, easy to use program that provides users with

professional looking graphs. Initially, the goal of this thesis was the further develop-

ment of Grapha by improving and adding features to the program. After some review,

it was decided that Grapha would be rewritten in C++ using the Qt Framework and

Qt Creator. Grapha’s successor program, named Graphic, has a redesigned and sim-

plified interface, additional file outputs and an expanded graph library. Numerous

features were also added including a “Freestyle” mode, to create custom graphs, a

node editing feature, that allows the user to move nodes around within a graph, and

a deletion feature.

xvii

xviii

Chapter 1

Introduction

In many disciplines people have numerical data or data representing relationships

between entities. The understanding of both these types of data can often be im-

proved by providing visual depictions or representations of the data, as the example

in Figure 1.1 shows.

6 8 10 12 14 16
0

5000

10000

15000

20000

25000

Education

In
co

m
e

Figure 1.1: Example of mock data displaying a correlation between years of education
and additional income above the average salary.

1

2 CHAPTER 1. INTRODUCTION

In other areas of study, the data of interest is a collection of “entities” and the

relationships between the entities. For example, a study may require data as shown

in Table 1.1 that indicates who knows whom in a group of several individuals.

Table 1.1: A table representing friendships between individuals

Person Erin Eric Robert Trevor Jill Maria Edward
Erin × × × X X X
Eric × X X X X ×
Robert × X X X X X
Trevor × X X × × ×
Jill X X X × X X
Maria X X X × X X
Edward X × X × X X

A graph G = (V,E) is a set of vertices (also known as nodes or points) and a

set of edges (also known as lines) [12]. The data in Table 1.1 could be modeled as

a graph where the individuals are represented as nodes and their relationships are

represented as edges. Although a graph is an abstract idea, it can be visualized with

a graph drawing. For example, a drawing of the graph representing the information

in Table 1.1 is shown in Figure 1.2; this graph has seven nodes and 14 edges. These

drawings can be crucial aids when conveying information.

Graphs are used extensively in various branches of mathematics and computer

science. Consequently, graph drawings are of considerable interest in both of these

fields. The arrangement of nodes and edges affects the understandability, usability

and aesthetics of the graph and what it represents. There are several ways to measure

these qualities [10]; one such measurement is graph symmetry. Symmetry is defined

as the arrangement of balanced proportions (such as size, shape, and position). Fig-

ure 1.3 shows two drawings of the same graph. The symmetric drawing on the right

makes it easy to see various “regular” aspects of the graph, such as the fact that

there is a cycle comprising all of the nodes but one. This is much less obvious in the

asymmetrical drawing on the left. Further, one might hypothesize that most people

would find the symmetrical drawing more aesthetically pleasing. Another measure-

ment used to create aesthetically pleasing graphs is known as “minimal edge crossing”.

3

Figure 1.2: A graph representing the data from Table 1.1

The edge crossing number, denoted cr(G), is the number of edges that overlap each

other [19]. A graph that has an edge crossing number of zero indicates that the graph

is planar; that is, it can be embedded on a plane. The number of bends in edges is

another graph drawing measurement. As Figure 1.4 demonstrates, a graph drawing

with bends in the edges can be considered more difficult to interpret than a graph

drawing without bends [24].

Figure 1.3: Two drawings of the same graph, one asymmetrical and one symmetrical

Creating a graph drawing with aspects of symmetry or regularity is difficult to

do free-hand, even with “snap to grid” and “align” tools provided by some computer

drawing tools. While such tools allow the creation of graphs (such as bipartite or

4 CHAPTER 1. INTRODUCTION

Figure 1.4: Two graphs, a left graph is drawn with bends in the edges while the graph
on the right is drawn without bends.

grids) shown in Figure 1.5 without much difficulty, other graph drawings based on

circles (such as cycles and Petersen graphs) are exceedingly difficult to lay out by hand

so they look aesthetically appealing. There is a need to provide a program that can

quickly generate quality graph drawings to visualize data. One tool whose purpose

is to allow people to interactively create high-quality graph drawings is known as

Grapha.

Figure 1.5: A drawing of a bipartite graph (left) and a grid graph (right).

1.1 Grapha

Grapha was started during the fall of 2013 by Nicolas Wetmore under the supervision

of Dr. Jim Diamond. The program was completed in the spring of 2014 [28]. The

1.1. GRAPHA 5

goal was to design and implement an easy-to-use program that could quickly generate

visual representations of graphs, with an easy-to-use graphical user interface (also

referred to as a GUI). The user’s graphs could be saved in different file formats. The

program was written using JavaScript, CSS and HTML and runs in a web browser

but does not require an internet connection. Grapha, as Wetmore [28] describes it,

has a “five-tabbed single-page user interface. . . Every tab contains a different set of

functions which can be performed. The flow of the user interface is from left to right”.

As shown in Figures 1.6, 1.7, 1.8, 1.9 and 1.10, the user begins at the leftmost tab

titled Make New Graphs where he or she selects a graph they would like drawn. The

graph drawing is rendered using a html tag titled “canvas” that allows raster-based

image creation [28]. Once the graph is created the user is automatically directed to the

Edit Basic Graphs tab where the user can edit the attributes of a graph drawing,

such as graph height, graph width, and node sizes. The user also has the option to

select the output format of their graph from this tab. The Save, Load, and Delete

Graphs tab has features that allow the user to save or delete their graph drawings and

the Combine Saved Graphs and Edit Combined Graphs tabs allow them to combine

graphs and edit the combined graphs respectively.

6 CHAPTER 1. INTRODUCTION

Figure 1.6: Make New Graphs tab

Figure 1.7: Edit Basic Graphs tab

1.1. GRAPHA 7

Figure 1.8: Combine Saved Graphs tab

Figure 1.9: Edit Combined Graphs tab

8 CHAPTER 1. INTRODUCTION

Figure 1.10: Save Load and Delete tab

1.2 Graph Drawing Software

All of the graph drawing programs detailed in Wetmore’s thesis are summarized in

Table 1.2. For clarification of Table 1.2a, Wetmore noted if each program could

be run on a mobile device and whether it requires installation under the columns

“Mobile” and “Installed” respectively. The programs listed in Wetmore’s thesis are

still available today. In addition to Wetmore’s findings, there are other graph drawing

programs available.

1.2. GRAPH DRAWING SOFTWARE 9

Table 1.2: Programs and their capabilities

(a) Supported platforms and portability

Software Desktop Mobile Installed On-line Off-line

Graph Creator X × × × X

Creately X × X X X

GraphTea X × X × X

GraphViz X × X × X

Gephi X × X × X

Grapha X X × X X

(b) Outputs

Software Raster-Based Output Latex Output SVG Output

Graph Creator × × ×
Creately X × X

GraphTea X X ×
GraphViz X × X

Gephi X × X

Grapha X XTikZ X

(c) Ease and speed of use

Software Graph Generation Specific Editing Learning Curve Time to Use

Graph Creator × X minimal average

Creately × X average average

GraphTea X X average minimal

GraphViz × With Work steep maximal

Gephi × X steep average

Grapha X × minimal minimal

.

10 CHAPTER 1. INTRODUCTION

1.2.1 yED

Written in Java and thus runnable on platforms that support a Java Virtual Machine,

yED is considered more of a diagramming software than a graph drawing software.

This program can draw various types of diagrams such as flowcharts, network dia-

grams, UML diagrams, and Entity Relationship diagrams. It does, however, have a

small subset of graph drawing algorithms such as grid and tree layouts. As shown

in Figure 1.11 the program can generate a tree graph automatically, but should the

user want to draw a Petersen graph they would need to generate it manually. Draw-

ing a Petersen graph manually can be time consuming and may not produce quality

results. The program has various output formats for the user to save their graph

drawings [29].

Figure 1.11: The interface of yED displaying an automatically generated binary tree
graph (left) and a manually created Petersen graph (right).

1.2.2 Tulip

Tulip is a data modeling program; two views of its user interface are shown in Fig-

ure 1.12a. As its website explains, “Tulip is an information visualization framework

dedicated to the analysis and visualization of relational data” [26]. The program is

data driven and creates graphs based on abstract data. Figure 1.12b demonstrates

1.2. GRAPH DRAWING SOFTWARE 11

Tulip generating a graph displaying an air traffic map from 1990 data. Although

Tulip also has a small subset of graph drawing algorithms, the program only allows

the user’s work to be saved its native file format.

1.2.3 Meurs Challenger

Similar to Tulip, Meurs Challenger is a data visualization software with integrated

interactive data analysis and browsing features [16]. As presented in Figure 1.13, the

main goal of Meurs Challenger is to visualize a large quantity of data to make it

readable and understandable for the user.

Figure 1.13: Output of Meurs Challenger. Although difficult to interprete due to
the density of the graph, the nodes represent actors while the edges (drawn in very
fine coloured lines) represent movies actors have starred in together.

1.2.4 Microsoft Research AGL

Microsoft Research AGL (Automatic Graph Layout): AGL can be executed from

inside a web browser or installed on a computer. While it allows graph customization,

12 CHAPTER 1. INTRODUCTION

(a) An example of Tulip’s user interface with a grid graph.

(b) Output of Tulip generating a graph displaying an air traffic map from 1990
data.

Figure 1.12: Tulip’s user interface and sample output

1.2. GRAPH DRAWING SOFTWARE 13

AGL requires the user to type in the attributes of a graph using a somewhat verbose

and tedious input format. Therefore, this program lacks ease of use and requires user

knowledge of the input format [25]. Listing 1.1 and Figure 1.14 provide input and

output examples of AGL.

Listing 1.1: A sample of input the user is required to write to generate the graph

shown in Figure 1.14.

1 digraph "Honda -Tokoro" {

2 rankdir ="LR" ranksep ="0.2" edge[labelfontsize ="8"

fontsize ="8" labeldistance ="0.8" arrowsize ="0.9"

labelangle ="-30" dir="none"] nodesep ="0.2" node[width

="0" height ="0" fontsize ="10"]

3 n000 [label ="z"]

4 n001 ->n000 [headlabel =":s:" arrowhead =" invdot "]

5 n001 [label ="m"]

6 n002 ->n001 [samehead ="m002" headlabel =":r:"

samearrowhead ="1" arrowhead =" invdot" arrowtail ="inv"]

7 n002 [label ="p1"]

8 n003 ->n002 [headlabel =":s:" arrowhead ="dot"]

9 n003 [label ="b"]

Figure 1.14: Output of AGL.

14 CHAPTER 1. INTRODUCTION

1.2.5 BioFabric

BioFabric is another graph drawing software package which uses an alternative mod-

eling method to draw graphs (Figure 1.15). In BioFabric, nodes are depicted as hor-

izontal line segments while edges are represented as vertical line segments; each edge

has it’s own unique column. This specific layout scheme can be useful for biologists

to display large networks in a organized display [13], [20].

Figure 1.15: A example of how the program Biofabric models a graph’s nodes and
edges.

1.3 The Goal

The majority of graph drawing programs discussed above are being developed to

model and analyze large and complex systems such as social networks. Amongst all

these graph drawing programs, Grapha is useful because it allows interactive con-

struction of a graph drawing; that is, Grapha fills a need which none of these other

programs address. Wetmore outlined five goals for Grapha to help define an “easy to

use” program [28]:

• Quick Graph Generation: Grapha will need a way in which to generate

entire graphs at once without much interaction from the user. This is opposed

to generating graphs in a way, which requires the user to specify each detail

along the way.

• Quick to Use: For a user to use Grapha and obtain output, he should not

have to spend much time. Another way of describing this is in terms of the

1.3. THE GOAL 15

number of clicks. There should be a minimal number of clicks required in order

to generate and output a graph.

• Easy to Learn: The path that the user needs to follow in order to generate a

graph should be apparent and intuitive.

• Different Outputs: The user should be able to output a graph from Grapha

in many different formats.

• Portable: Grapha should run on mobile and desktop operating systems as well

as run both on-line and off-line in order to be accessible to a large number of

users in many different locations.

Obtaining quantitative measures on Wetmore’s goals Easy to Learn and Quick

to Use would be difficult, which renders them subjective. While designing rigorous

experiments to measure these would be an interesting investigation, it is outside the

main thrust of this thesis.

Therefore this thesis will take a different approach. There is research available

that provides paradigms and models to create effective and intuitive graphical user

interfaces [17], [27], [22], [18], [15]. These models allow UI designers to communi-

cate concepts and relationships that exist in the application. Communicating these

concepts well enough allows the user to quickly understand how to use the program.

The goal and focus of this thesis is to maintain Wetmore’s goals of Grapha while

improving the functionality that Wetmore established. Each feature of Grapha that

will be refined, as well as the features that will be added, will have the same underlying

concept: the ease of use. Grapha’s successor program, Graphic, will be designed with

these goals and features in mind.

The following five chapters of this thesis describe Graphic and it’s features in

detail. Chapter 2 addresses the features of Grapha that will be improved upon as

well as the features to be added. Chapter 3 explains the design of the software.

Chapter 4 details the implementation of the new software. Chapter 5 discusses the

use of the program. Chapter 6 concludes with possible future work and features to

further improve Graphic.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Requirements

After reviewing Wetmore’s thesis and program, a number of additions and areas for

improvement were identified. As stated previously, defining and implementing these

improvements is the focus of this thesis.

2.1 Grapha Walkthrough

Before expanding upon improvements to Grapha, it would be beneficial to explain

the steps one would take to generate a graph in this program.

2.1.1 Select a Graph

As the user opens Grapha in a browser the program starts at the first tab, Make New

Graphs, as shown in Figure 2.1. The user must select from a range a graph types.

Then the user will be prompted to change attributes of the graph drawing, such as

adjusting the size of the nodes, the height and width of the graph and the choice of

whether to label the nodes. Once the user clicks on Generate Graph the Edit Basic

Graphs tab will be selected and the user’s graph will be displayed.

17

18 CHAPTER 2. REQUIREMENTS

Figure 2.1: In the Make New Graphs tab the Petersen graph has been selected to be
drawn with “small” nodes.

2.1.2 Edit a Graph

In the Edit Basic Graphs the user can select various options to customize their

graph. As displayed in Figure 2.2 the options from the previous tab are carried over,

in addition to adding weights to the edges. Since Grapha has a graph saving feature,

a saved graph can be loaded into this tab for editing. Once the editing is completed

there is the option to save the graph to cache memory or output the graph in either

.png, .jpeg, .bmp, .webp, .TikZ and .svg format.

2.1. GRAPHA WALKTHROUGH 19

Figure 2.2: In the Edit Basic Graphs tab the Petersen Graph is drawn with a
rotation of 10 degrees. The nodes and edges have been assigned labels and weights
respectively.

2.1.3 Saving and Loading Graphs

All the graphs saved to cache can be deleted or saved to the local file system on the

Save, Load, and Delete Graphs tab shown in Figure 2.3. All the graphs would be

saved into a .txt file. This library of graphs can be loaded into Grapha in the current

or future Grapha sessions.

20 CHAPTER 2. REQUIREMENTS

Figure 2.3: The Save, Load, and Delete Graphs tab displaying the saving, loading
and deleting features of Grapha

2.1.4 Combining Graphs

When at least one graph has been saved to the cache, graphs from the cache can be

combined together in the Combine Saved Graphs tab to form a so-called “compound

graph” (This idea is explained further below). First, two graphs are copied from

the cache (or, one graph from the cache can be copied twice). Then a node from

each graph must be selected to indicate where the graphs will be joined as shown

in Figure 2.4. By clicking on “Combine Graphs” the Edit Combined Graphs tab is

selected and the new complex graph is drawn. Much like the Edit Basic Graphs tab,

the Edit Combined Graphs tab, shown in Figure 2.5, allows the user to customize

the graph in a similar manner by rotating the graph and relabeling or resizing the

nodes. Once the user is satisfied with their compound graph they are able to save it

to cache or to a file format mentioned previously.

2.1. GRAPHA WALKTHROUGH 21

Figure 2.4: In the Combine Saved Graphs tab the Petersen graph constructed in
Figure 2.2 is to be combined with a Cycle graph at vertices V6 and V4.

22 CHAPTER 2. REQUIREMENTS

Figure 2.5: In the Edit Combined Graphs tab the graphs in Figure 2.4 have been
combined.

2.2 Improvements

The improvements of Grapha’s features shall be explained in the following sections:

2.2.1 Graphs

Currently, Grapha allows the user to choose between eight different pre-defined graph

types. Graphic will have an expanded library of graphs for the user to select from.

2.3. FILE OUTPUT FORMATS 23

2.2.2 Attributes of a Graph

Currently in Grapha, the user is able to adjust the dimensions of the graph, the

number of nodes per graph and the rotation. The user can further customize the

graph by adding labels and weights to nodes and edges respectively. Graphic will

contain the same input fields and provide additional ones to allow more detailed

customization.

2.3 File Output Formats

Currently, Grapha only has six output file formats. More file formats will be added

to Graphic’s output repertoire to allow flexibility for the user. Another output file

format, with the file format .edges, will be created, by special request. This file

format provides a listing of edges of a graph and may be useful for people developing

graph theory algorithms. Finally, a more user friendly Save file dialog window will

be added so the user can easily select where they want to save their graph and in

which format.

2.4 Joining Graphs

In his thesis, Wetmore describes a compound graph as “a graph in which there are

multiple basic or compound graphs joined together. These graphs form a larger

more complex graph when joined”. The same terminology is also used in this thesis.

Figure 2.6 provides an example of a basic graph and a compound graph.

2.5 Graphical User Interface

Although Grapha incorporated an easy to use interface, several improvements can be

made to it. The features in tabs Make New Graphs, Edit Basic Graphs, Combine

Saved Graphs and Edit Combined Graphs could be combined into one tab. Grapha

does not have an established layout or organizational pattern amongst the tabs. That

24 CHAPTER 2. REQUIREMENTS

Figure 2.6: An example of a basic graph (left) and a compound graph (right). The
compound graph is made up of two basic graphs: a star and a bipartite graph.

is, the layout of the buttons and text fields change from tab to tab. The Edit Basic

Graphs tab, for example, has a blue border that groups the buttons that edit edge

attributes. However, the buttons and text input fields that edit node attributes are

not contained within a border. These inconsistencies in the graphical user interface

can confuse the user. The Gestalt Principles help explain how humans perceive, or-

ganize and make sense of visual information [21]. The similarity principle explains

that people often perceive similar looking objects as a group or pattern. The con-

tinuation principle illustrates how the eye is compelled to move through one object

and continue to another object. The proximity principle describes how elements that

are placed close together are usually perceived as a group. These principles can be

utilized to create an improved user interface for Graphic.

2.6 Additional Features

The following sections describe the new features of Graphic.

2.6.1 Freestyle Graph Creation

This new feature will allow the user to generate their own custom graph. With

simple mouse clicks the user can create and position nodes and edges to create graphs

completely “by hand” or to add nodes and edges to already-defined graphs.

2.6. ADDITIONAL FEATURES 25

2.6.2 Graph Editing

When the user generates a graph they may wish to rearrange the nodes. An edit

feature in Graphic will allow the user to do this. Careful consideration must be made

for this feature since the edges incident to the moved node must be adjusted and

rendered appropriately.

2.6.3 Graph Component Deletion

The user may want to delete certain components from their graph. The user, for

example, may want to generate a graph which is almost complete (a complete graph

is a graph in which every pair of distinct vertices is connected by a unique edge) [9].

A deletion feature was implemented in Graphic that allows users to delete edges,

nodes or entire graphs. Some care must be put into node deletion, however, since by

definition, an edge must have two nodes. Therefore when a node is deleted, all edges

incident to that node must also be deleted.

26 CHAPTER 2. REQUIREMENTS

Chapter 3

Design

After some careful consideration, it was decided that Graphic would be implemented

using C++ and a program called Qt Creator instead of appending JavaScript func-

tions to Grapha’s code. This choice will be explained in more detail below.

3.1 Language Choices

As Wetmore [28] explains in his thesis, “JavaScript is not really a single language

which is developed by a single entity. Instead, JavaScript is a term used to refer to

a group of languages which are all used for similar purposes. . . There is no single

standard for exactly how to interpret or process JavaScript. When a browser en-

counters JavaScript code on a web page, the browser hands the JavaScript off to an

appropriate engine which handles the code for the browser. One problem with this

is that almost every major browser uses a different JavaScript engine to interpret

and execute the commands of the language”. Since different browsers use different

forms of JavaScript there can be dissimilar results for the same code. In Grapha, for

example, Wetmore had to create separate functionality to allow graph saving if the

user ran Grapha in the Internet Explorer browser. For a program whose goal is to

be easy-to-use it would appear that JavaScript could be an unreliable language, since

the program could behave differently on various browsers that use different engines

to interpret JavaScript. Knowing these drawbacks of JavaScript, it was decided that

27

28 CHAPTER 3. DESIGN

Graphic would be programmed in a different language.

3.1.1 C++

C++ is a standardized cross-platform language [11]. Bjarne Stroustrup, the creator

of C++, describes it as a language that “. . . allows for high level abstraction and

efficiency” [8]. It has the ability to manipulate memory at a low level while enforc-

ing object orienting programming structures with the speed of the C programming

language [8]. This language is predominantly used for desktop applications [11]. The

nature of Graphic’s proposed implementation would be best suited to use an ob-

ject oriented approach. Graphic would contain classes to represent nodes, edges and

graph objects. Combining this programming model with the efficiency of a C lan-

guage, C++ would be a sound choice of language to use for Graphic. When paired

with an integrated development environment (IDE) that uses C++, such as Qt Cre-

ator, Graphic would be a robust piece of cross-platform software.

3.1.2 Qt Creator

Qt Creator is a cross-platform IDE designed to facilitate the development of programs

using Qt. [5]. The user is provided with a large set of components and widgets to

design and develop their own graphical user interface. Widgets, as Qt documentation

explains, are “. . . elements for creating user interfaces in Qt. Widgets can display data

and status information, receive user input, and provide a container for other widgets

that should be grouped together.” [7]. A few examples of widgets include, but are

not limited to, spin boxes, labels and text edit fields; see Figure 3.1 for examples of

these widgets. The developer is able to preview their GUI as they design it without

the need to compile, which allows them to quickly iterate through the design process.

Other IDEs, such as Eclipse, do not provide a GUI builder so another program such

as Glade must be used to create the user interface [14], [23]. Qt Creator’s design

features, cross-platform capability and large framework make it a suitable IDE to

create Graphic.

3.2. REVIEW OF GRAPHA’S DESIGN 29

Figure 3.1: Examples of various Qt Widgets [7]

3.2 Review of Grapha’s Design

It is important to review Grapha’s code to understand the design choices. Ideas

used in the development of Grapha were used or improved during the design and

implementation of Graphic. Since Wetmore wrote Grapha using JavaScript for use

in browsers these ideas must be translated into C++ for Graphic.

3.2.1 Grapha.html

This HTML file contains the code that creates the user interface. It arranges the five

different tabs as well as the placement of the input fields. The majority of the input

fields are already populated with default values. Once the user selects the graph they

want to draw and clicks the button Generate Graph, the values from all the fields

are used to render the graph in Edit Basic Graphs of Grapha.

30 CHAPTER 3. DESIGN

3.2.2 Graph.js

This JavaScript file initializes the default values of the user interface at run time in

Grapha.html. It also collects the values from the input fields and generates a graph

once the user clicks the Generate Graph button. Graph.js contains other listener

functions for the Edit Basic Graphs tab of the interface. There are functions that

will change all the weights or individual weights of edges based on user interaction.

This script also generates and formats a name for the graph that is later used for

saving that graph.

3.2.3 UserInteraction.js

This script connects event listeners, such as a listener for mouse drags, with functions

found in Grapha’s various scripts. Listener functions are created for each tab to handle

the events differently. The Edit Basic Graphs tab, for example, requires mouse click

event listeners to monitor if the user is clicking on an edge (to adjust the value of its

weight). The Edit Combined Graphs tab, on the other hand, monitors user clicks to

check if they have selected nodes that will be used to combine two graphs.

3.2.4 SaveLoadDelete.js

As the name implies, this script handles the loading and saving of graph drawings.

This script also handles the storing and deleting of graphs in the browser cache. There

are functions that handle the saving and loading depending on the particular browser

Grapha is running in.

3.2.5 RenderConnect.js

This script contains functions that return lists of edges and nodes that are used to

render the different types of graphs onto the canvas. There are separate functions

for drawing nodes and edges, respectively.

3.3. REDESIGN 31

3.2.6 Outputs.js

This script contains the various functions used to generate .png, .jpeg, .bmp, .webp,

.tikz and .svg files. This script also contains functions that draw nodes and edges

onto the canvas.

3.2.7 Objects.js

This script contains various functions that initialize objects to be used in other scripts.

The functions to create node and edge objects are written in this script.

3.2.8 HelperFunctions.js

This script file contains additional functions to assist the drawing of the graphs. There

are several translation and rotations functions to alter the orientation of the graph.

3.2.9 GraphTypes.js

This script holds the different graph types Grapha has to offer. There is an initial-

izer function for each graph that the user can select. These functions initialize the

variables needed to draw the graph on the canvas.

3.3 Redesign

The following sections details the ideas selected for implemented in Graphic.

3.3.1 User Interface

In Graphic the number of tabs used in the interface was reduced to provide the user

with all Grapha’s features on one window. Graphic also provides a more interactive

drawing area that will be called the “canvas” that allows the user to add, edit and

arrange as many graph drawings as they wish. Graphic would use a top-down design

methodology and group similar UI elements together to create an organized layout

32 CHAPTER 3. DESIGN

for the GUI. This approach to organizing is known as the Gestalt principle [17].

At the top of the tab widget, the input fields that modify the characteristics of the

entire graph, such as the graph type, width, height and rotation, will be grouped

together. Below, the input fields that control edge and node characteristics will also

be organized in a similar way. Edge and node characteristics can be grouped in two

ways: the properties can be grouped by what they are controlling and how they are

controlling it. The edge and node colour characteristics, for example, can be grouped

together because they perform the same function (they change the colour of edges

or nodes) and they can be grouped with characteristics that change the same object

(the edge colour can be grouped with the edge weight input field and the edge size

input field). Therefore a table layout should be implemented. Each row could specify

a characteristic (colour or label) and columns indicate what the characteristic affects

(node or edge).

3.3.2 Pre-defined Graphs

A total of seven graphs are added to Graphic’s library in addition to those found in

Grapha’s library. These graphs are grid, helm, crown, prism, anti-prism and gear as

shown in Figure 3.2. The Dutch Windmill, also known as the friendship graph, was

also added to the library to provide an example that graphs with greater complexity

can also be included in Graphic. Forethought was required when designing this

library such that supplementary pre-defined graphs can be easily added at a later

date.

3.3.3 Attributes of a Graph

In Graphic, the user will be able to adjust the font size of edge weights and node

labels. The user will also be able to resize the edges and nodes, as well as be able to

colour edges and nodes. The height and width attributes will be adjusted to allow

the user to scale the graph. For example, a cycle graph would always be drawn as a

circle in Grapha. In Graphic, however, a cycle graph could be drawn as an ellipse.

3.3. REDESIGN 33

Figure 3.2: Additional graphs to be included in Graphic. From left to right: Grid
(G3), Helm (H3), Crown (R3), Prism (Y3), Anti-prism (A3), Gear (G3), Dutch Wind-
mill (D6

3)

3.3.4 User Modes

Graphic has different modes that allow the user to interact with graph drawings in

different ways:

Join Mode

This mode allows the user to join two graphs together, forming one larger graph.

The user can join two graphs together by choosing either one or two nodes from each

graph. If the graphs are joined by one node, the graphs join together by translating

one graph to the other while maintaining uniformity in edge lengths of the graph.

If the user joins graphs together by two nodes, then the second graph will rotate to

align the joining nodes and translate to join the nodes together.

34 CHAPTER 3. DESIGN

Delete Mode

Users are able to select and delete nodes and edges from a graph. By utilizing a

straightforward user input, such as a key stroke or a mouse click, the delete can

entire graph or graph attributes with ease.

Edit Mode

Nodes can be freely moved around within each graph. Edges incident to the moving

node are updated to reflect its new position.

Freestyle Mode

The user can create their own arbitrary graphs in this mode. It allows the user to

add nodes and edges. Graphic will also allow the user to add nodes and edges to

graphs that are already on the canvas.

Drag Mode

The user is able to move the graphs around on the canvas to arrange them to his or

her liking.

3.3.5 Graphic Classes

The following sections are proposed class ideas for Graphic.

Node Class

The node class would store the following node attributes:

• Diameter

• Fill colour

• Outline colour

• List of edges incident with the node

3.3. REDESIGN 35

• Label

• Label’s font size

The user would be able to change visual aspects such as size and colour and the

number of edges that connect to the node. The user would also be able to label the

node via the label object within the node.

Edge Class

The edge class stores similar attributes as the node class. The following is a list of

edge attributes:

• Source node

• Destination node

• Weight

• Line width

• Colour

• Weight’s font size

The edge will be drawn as a solid line. The thickness of the line would be deter-

mined by the user. The user would also be able to define its colour and weight.

Label Class

The label class would store a string. It is essentially a text field that would be in

the center of the object. This class would be used to store labels in node and edge

objects. Any value can be entered into the node and edge labels.

36 CHAPTER 3. DESIGN

Graph Class

The Graph class would store node and edge objects. Graph objects would also store

other graph objects. Establishing this recursive structure allows future programmers

of Graphic to build upon the current version. For example, a developer may want

to create an algorithm or feature that checks how many simple graphs went into the

final graph.

Preview Class

As the name suggests, the Preview class would generate a preview of a graph. The

graph would be generated and updated as the user changes the input fields for the

graph. Once the user is satisfied with their graph they could drag it from the Preview

drawing onto the CanvasView Object.

CanvasView Class

The CanvasView object will contain and display all the edge, node and graph objects

the user creates. The user could further customize their graphs on the canvas by

moving around the graphs, deleting edges, nodes or entire graphs, adding nodes and

edges or even moving around nodes within a graph by way of the new features. The

different modes used affect how the user interacts with the canvas object.

The next chapter discusses the implementation of these ideas.

Chapter 4

Implementation

Agile development was applied to the creation of Graphic, just as it was used in the

development of Grapha [28]. This development model provided crucial user feedback

that allowed Graphic to become a powerful tool while still remaining user friendly.

4.1 MainWindow Class

The MainWindow class maintains the connections between the different widgets and

classes of Graphic via Qt’s signals and slots mechanism [6]. A signal is emitted when

a particular event occurs. A slot, usually a normal function, is connected to a signal

and will fire when the signal is emitted. This class contains the methods related

to saving image, grphc, edges and TikZ files and loading custom user graphs. Qt

contains its own set of classes to read and write images and SVG files. By utilizing

these classes, saving graphs as images was a straightforward feature to implement.

The additional file formats such as .tikz, .grphc and .edges require the parsing

of information into text format to be read by other programs. Refer to Listings 4.1, 4.2

and 4.3 as output files for the cycle graph in Figure 4.1. The .grphc files are the

native file format for this program. The information of every node and edge had be

stored so the user could reload the same graph at a later time. The .edges file format

is a text file that contain a list of edges, where each edge is represented as a pair of

node indices. This file type provides an abstract representation of a graph that can

37

38 CHAPTER 4. IMPLEMENTATION

be useful for graph theorists as explained earlier in this thesis.

Generating TikZ code was a moderate challenge that required the user’s graph

information to be modeled in the TikZ language. The same format that Wetmore

used to generate TikZ code was used in Graphic with some modifications: the colours

of the edges and nodes must be stored in the file as well. The user can save their

files anywhere on the computer but Graphic has a special directory for .grphc files

in which the user is encouraged to save their files.

Figure 4.1: A cycle graph with five nodes (C5)

Listing 4.1: .edges output file for a cycle graph with five nodes.

1 5

2 0, 1

3 0, 4

4 1, 2

5 2, 3

6 3, 4

Listing 4.2: .TikZ output file for a cycle graph with five nodes.

1 \begin{tikzpicture} [x=1.0in, y=1.0in , xscale=1, yscale

=1]

2 \definecolor{node0fillColor} {RGB} {255 ,255 ,255}

3 \definecolor{node0lineColor }{RGB}{0,0,0}

4.1. MAINWINDOW CLASS 39

4 \node (v0) at (0.165937 ,1.84444) [scale =1.00 , font=\

fontsize {1}{1}\ selectfont , fill=node0fillColor , shape

=circle ,minimum size =0.00277778in,draw=node0lineColor

]{$$};

5 \definecolor{node1fillColor} {RGB} {255 ,255 ,255}

6 \definecolor{node1lineColor }{RGB}{0,0,0}

7 \node (v1) at (1.25965 ,1.04981) [scale =1.00 , font=\

fontsize {1}{1}\ selectfont , fill=node1fillColor , shape

=circle ,minimum size =0.00277778in,draw=node1lineColor

]{$$};

8 \definecolor{node2fillColor} {RGB} {255 ,255 ,255}

9 \definecolor{node2lineColor }{RGB}{0,0,0}

10 \node (v2) at (0.84189 , -0.235925) [scale =1.00, font=\

fontsize {1}{1}\ selectfont , fill=node2fillColor , shape

=circle ,minimum size =0.00277778in,draw=node2lineColor

]{$$};

11 \definecolor{node3fillColor} {RGB} {255 ,255 ,255}

12 \definecolor{node3lineColor }{RGB}{0,0,0}

13 \node (v3) at (-0.510016 , -0.235925) [scale =1.00, font=\

fontsize {1}{1}\ selectfont , fill=node3fillColor , shape

=circle ,minimum size =0.00277778in,draw=node3lineColor

]{$$};

14 \definecolor{node4fillColor} {RGB} {255 ,255 ,255}

15 \definecolor{node4lineColor }{RGB}{0,0,0}

16 \node (v4) at (-0.927778 ,1.04981) [scale =1.00, font=\

fontsize {1}{1}\ selectfont , fill=node4fillColor , shape

=circle ,minimum size =0.00277778in,draw=node4lineColor

]{$$};

17 \definecolor{edge0edgeColor }{RGB}{0,0,0}

18 \definecolor{edge1edgeColor }{RGB}{0,0,0}

19 \definecolor{edge2edgeColor }{RGB}{0,0,0}

40 CHAPTER 4. IMPLEMENTATION

20 \definecolor{edge3edgeColor }{RGB}{0,0,0}

21 \definecolor{edge4edgeColor }{RGB}{0,0,0}

22 \definecolor{edge5edgeColor }{RGB}{0,0,0}

23 \path (v0) edge[draw=edge0edgeColor ,line width =0.0138889

in] node [font=\ fontsize {12}{1}\ selectfont]{$$} (v1);

24 \path (v4) edge[draw=edge1edgeColor ,line width =0.0138889

in] node [font=\ fontsize {12}{1}\ selectfont]{$$} (v0)

;

25 \path (v1) edge[draw=edge2edgeColor ,line width =0.0138889

in] node [font=\ fontsize {12}{1}\ selectfont]{$$} (v2);

26 \path (v2) edge[draw=edge3edgeColor ,line width =0.0138889

in] node [font=\ fontsize {12}{1}\ selectfont]{$$} (v3);

27 \path (v3) edge[draw=edge4edgeColor ,line width =0.0138889

in] node [font=\ fontsize {12}{1}\ selectfont]{$$} (v4);

28 \end{tikzpicture}

Listing 4.3: .grphc output file for a cycle graph with five nodes.

1 5

2 11.9475,-132.8,0.2,0,1,1,1,0,0,0

3 90.695, -75.5866,0.2,0 ,1,1 ,1,0 ,0,0

4 60.6161 ,16.9866 ,0.2 ,0 ,1 ,1 ,1 ,0 ,0 ,0

5 -36.7211 ,16.9866 ,0.2 ,0 ,1 ,1 ,1 ,0 ,0 ,0

6 -66.8,-75.5866,0.2,0,1,1,1,0,0,0

7 0 ,1 ,0.1 ,0.00694444 ,0 ,1 ,0 ,0 ,0

8 0 ,4 ,0.1 ,0.00694444 ,0 ,1 ,0 ,0 ,0

9 1 ,2 ,0.1 ,0.00694444 ,0 ,1 ,0 ,0 ,0

10 2 ,3 ,0.1 ,0.00694444 ,0 ,1 ,0 ,0 ,0

11 3 ,4 ,0.1 ,0.00694444 ,0 ,1 ,0 ,0 ,0

The user can load a specific graph that has been previously saved to their com-

puter. The loadGraphicFile method will open up the .grphc file the user selected

4.2. GRAPHIC CLASSES 41

and parse the information to generate the graph onto the preview window. A Graphic

directory (graph-ic) is checked every time Graphic is executed; any .grphc files

saved in this directory will be loaded into Graphic. This directory is always created

and checked in the same directory as Graphic

4.2 Graphic Classes

The following sections describe the program layout of Graphic. The majority of

the classes created for Graphic will be subclassed from classes provided from the Qt

framework.

4.2.1 QGraphicsView Class

As Qt documentation describes, the QGraphicsView is a widget that displays the

contents of a QGraphicsScene (which will be discussed in further detail later in this

chapter). In Graphic, QGraphicsView has been subclassed into two classes to handle

different view widgets with different functionality; the Preview widget and the canvas

widget [4].

The Preview object, as the name suggests, generates a preview of a graph the

user created from their inputs. When the user is satisfied with the graph they drag

and drop the graph over to the CanvasView. The Preview object provides the user

with a quick visual feedback to their inputs.

The CanvasView displays the user’s graphs and allows the user to interact with

their graphs. This view has different behaviours depending on which mode the user

selected. An overview of the modes was given in the previous chapter.

4.2.2 QGraphicsScene Class

This Qt class is a container for visualizing QGraphicItems [2]. The QGraphicsScene

class uses an indexing algorithm to efficiently organize and determine the location of

QGraphicItems that are rendered. The Qt documentation states that a QGraphics-

Scene can manage millions of items on one scene [2]. This feature is crucial to

42 CHAPTER 4. IMPLEMENTATION

Graphic. This capability allows the user to create very large graphs without nega-

tively impacting the performance of the program. The different modes of Graphic

require the quick and efficient identification of nodes and edges via mouse clicks.

QGraphicsScene has various functions that filter the different key press and mouse

click events. The canvas is a subclass of QGraphicsScene.

4.2.3 QGraphicsItem Class

The QGraphicsItem class is the base class for all graphical items in a QGraphicsScene.

When creating a custom QGraphicsItem class the developer must implement two vir-

tual public functions, the boundingRect() method, which returns an estimate of the

area painted by the item, and the paint() method, which implements the painting of

the object. It is also advised to implement the Type() method; this method returns a

unique integer that is used to help identify a QGraphicsItem [1]. This latter method

has proven to be very useful when casting a QGraphicsItem object to a node or edge

object. The node and edge classes are subclasses of the QGraphcisItem class.

Node Class

The node class stores the necessary information to be rendered. As mentioned in

the previous chapter, this class stores a diameter (in pixels), a list of edges that are

incident to it, and a label should the user want to include one in their graph. Its

paint() method will render the node object based on the diameter, the outline and

fill colour the user has chosen. The label is also rendered in the paint method and

placed in the center of the node.

Edge Class

The edge object represents the abstract edge in graph theory. An edge requires two

nodes, one at each end, for it to be rendered. Like the node object, the edge object

stores the necessary information for rendering. The edge class currently stores a

colour, the two nodes it connects, the thickness of the edge (measured in pixels), the

weight and the font size of the weight. As these attributes are updated the paint

4.3. BASICGRAPHS CLASS 43

method will be called to update the edge object. In addition to “getter” and “setter”

methods the edge class also has an adjust() method that gets called when either

nodes are moved on the canvas. The coordinates are updated and the edge will get

drawn so it remains connected to its nodes.

Label Class

The label class is a subclass of a QGraphicsTextItem, which is a subclass of a

QGraphicsItem [3]. It has a unique flag, TextEditorInteract, that allows the user

to click on the text item and modify it. The setTextInteraction() method in the

label class can set the text interaction flag so the labels can be enabled and disabled

depending on the mode selected.

Graph Class

This class can delegate whether an event can be handled by an individual child item,

such as a node or edge object, or if the event should be handled by the parent graph

object. For example, the user can move an entire graph around on the canvas or just

a single node, depending on the mode the program is in.

4.3 BasicGraphs Class

The BasicGraphs class is a library of graph drawing algorithms. The location of

each node in a graph is calculated based on the size of the nodes and the graph the

user specified. A graph can be drawn with or without edges depending on user input.

Since edge objects have the adjust() method mentioned earlier there is no need to

calculate edge positions. A developer can easily add a new graph to this library by

implementing a new drawing algorithm in this class. Listings 4.4 provides an example

of a method in the BasicGraphs class that calculates the node positions of a Petersen

graph.

44 CHAPTER 4. IMPLEMENTATION

Listing 4.4: A method from the BasicGraphs class that calculates the node positions

in a Petersen graph.

1 void BasicGraphs : : g en e r a t e p e t e r s en (Graph ∗ item , q r e a l width ,

2 q r e a l height , int numOfNodes ,

3 int s tarSk ip , bool complete)

4 {
5 item−>nodes . doub l e cy c l e . append (c r e a t e c y c l e (item , width , height ,

6 numOfNodes)) ;

7 item−>nodes . doub l e cy c l e . append (c r e a t e c y c l e (item , width /2 , he ight /2 ,

8 numOfNodes)) ;

9 i f (complete)

10 {
11 for (int i = 0 ; i < numOfNodes ; i++)

12 {
13 Edge ∗ edge = new Edge (item−>nodes . doub l e cy c l e . at (0) . at (i) ,

14 item−>nodes . doub l e cy c l e . at (0) . at ((i + 1)

15 % item−>nodes . doub l e cy c l e . at (0) . count ())) ;

16 edge−>setParentItem (item) ;

17

18 i f (s t a rSk ip % numOfNodes != 0)

19 {
20 edge = new Edge (item−>nodes . doub l e cy c l e . at (1) . at (i) ,

21 item−>nodes . doub l e cy c l e . at (1) . at ((i + s ta rSk ip)

22 % numOfNodes)) ;

23 edge−>setParentItem (item) ;

24 }
25 Edge ∗ connectEdge = new Edge (item−>nodes . doub l e cy c l e . at (0) . at (i) ,

26 item−>nodes . doub l e cy c l e . at (1) . at (i)) ;

27 connectEdge−>setParentItem (item) ;

28 }
29 }
30 }

4.4 Features Added During Development

Additional unplanned features were added to Graphic during the implementation of

the program.

4.5. CHALLENGES DURING DEVELOPMENT 45

4.4.1 Undo Node Move Features

When the edit mode was implemented it became apparent that an undo feature should

be implemented. A rudimentary undo-move feature was created to store the position

history of nodes. Should the user be unhappy with a moved node they can press the

esc key and the node will revert back to its previous position.

4.4.2 Snap-to-Grid Feature

A basic snap-to-grid feature was included on the canvas that creates a grid as a visual

aid for more precise alignment for graph drawings by “snapping” the graphs in place.

This feature can be deactivated.

4.4.3 Editing Individual Nodes and Edges on Canvas

The tab Edit Graphs provides the user the ability to edit nodes and edges individu-

ally. When the Edit Graph tab is selected it will generate widgets for each node and

edge that is on the canvas. The user will have a similar layout as the Create Graph

tab, such as the same button to change colour and a text field to input a label.

4.5 Challenges During Development

4.5.1 Screen Resolution and Measurements

In the initial development of Graphic, pixels were used as units of measurement for

a graphs width and height, in the same way Grapha was designed. However, this

created an inconsistency of graph sizes on computers with different screen resolu-

tions. If Graphic was run on a computer with a high screen resolution, it would

output a smaller graph than Graphic running on a computer with a low resolution

screen. It is important for the size measurements of a graph to be uniform across all

computers of varying screen resolutions. In place of pixels, inches were used as the

unit of measurement for the graph drawings to provide consistency across all com-

puters running Graphic. However, the Qt render methods required pixels to draw

46 CHAPTER 4. IMPLEMENTATION

QGraphicsItems. Therefore a conversion from inches to pixels was necessary. The

screen resolution of the computer Graphic is running on is required for the calcula-

tions. In Qt’s documentation it describes the QScreen class that provides queries to

screen properties. By using this class and the methods logicalDotsPerInchX and

logicalDotsPerInchY the conversion from inches to pixels could be calculated for

any computer screen Graphic is displayed on.

4.5.2 Widget Styles across Operating Systems

In the early development of Graphic it became apparent that Qt widgets were styled

differently depending on the operating system on which they were running on. The

inconsistency among widget styles became an issue when organizing the layout of

the widgets. One major inconsistency, in particular, was the difference of widget

font sizes. When Graphic was executed on a Linux system the font sizes of all the

widgets would be 14 points instead of 12 points as seen on Mac OS systems running

Graphic. Graphic requires its main window to have a small size in order to display

correctly on all screens with varying resolution. After considerable research without

a clear explanation from Qt documentation on how to resolve this issue a different

solution was designed an implemented. A private function was created and called

when Graphic is executed to manually set the font sizes of the widgets. Although

not an elegant solution, this function was able to resolve this particular issue.

4.5.3 File Browser differences

Another OS-dependent issue appeared during the final development stages of Graphic.

Files were not being saved on Linux systems despite the fact the same files could be

saved on Mac OS and Windows operating systems. After some debugging, it was

discovered that the Qt file browser behaves differently on different operating systems.

On Mac OS systems, for example, the file browser requires the user to select a file

type and include a file name. On Linux systems, however, the file extension must

be appended to the file name, otherwise the file won’t be saved. After acquiring this

information, a compiler flag #ifndef was included to check if Graphic is running on

4.5. CHALLENGES DURING DEVELOPMENT 47

a Linux system.

48 CHAPTER 4. IMPLEMENTATION

Chapter 5

Software

This chapter will provide detailed description of the program Graphic.

5.1 Overview of Graphic’s User Interface

As Figures 5.1a and 5.1b illustrate, Graphic’s interface received a complete redesign

from Grapha’s original UI. As mentioned in the design chapter, Graphic has reduced

the number of tabs used. Graphic has two tabs, the Create Graph tab that has all

the options available to create a graph, and the Edit Graphs tab that allow the user

to edit all the nodes and edges individually.

On the left-hand side of the interface there is a tab widget labeled Create Graph.

This widget provides the user with a variety of input options to customize a graph.

The graph is drawn on the preview object below the input fields and is redrawn

automatically when the user changes any input field. Once the user is satisfied with

their customized graph they can drag and drop the graph onto the canvas object.

Once dropped onto canvas, the user can further edit their graph via the modes that

were discussed in Chapter 3. Another feature added as a proof of concept was a

snap-to-grid feature, which allows the user to align graphs easily. This is an optional

feature and can be deactivated by the user.

49

50 CHAPTER 5. SOFTWARE

(a) Graphic user interface with Create Graph tab selected

(b) Graphic user interface with Edit Graph tab selected

Figure 5.1: Graphic user interface.

5.1. OVERVIEW OF GRAPHIC’S USER INTERFACE 51

5.1.1 Graph Input Fields

The input fields under the “Graph” label can manipulate the entire graph by altering

the height (in inches), width (in inches), rotation (in degrees) and number of nodes

in the graph. Adjusting the height and width of the graph is done by clicking the

arrows next to spin boxes associated with those dimensions under the “Size” label.

The spin boxes change by 0.5 inches per click but the user can enter a specific value.

The user can adjust the number of nodes using the spin boxes. The number of spin

boxes will change depending on the type of simple graph the user has selected from

the Graph Type dropdown box. A bipartite graph type, for example will have two

spin boxes, one for the user to select the number of nodes for top partition and the

other for the bottom partition. A cycle graph, on the other hand, will only have

one spin box. Finally, the user can also rotate the graph via the rotation spin box;

clicking on an arrow increments or decrements the value by 1 degree.

5.1.2 Node and Edge Input Fields

The input fields below the “Edge” and “Node” labels are used to style the edges

and nodes in the user’s graph, respectively. The labels below on the left hand side

titled “Label”, “Colour” and “Size” are used to break down the input fields to better

organize the layout. In the “Label” section, the user can enter a weight for all the

edges in the graph as well as label all the nodes in a graph. Below the “Text Input”

row the user can adjust the font size of the edge weights and node labels in points.

In the “colour” subsection the user can select the colour for the edges by clicking on

the colour button. A colour dialog window will pop up, allowing the user to pick a

colour. When the user clicks “OK” the colour will change on the graph and on the

button to represent what colour they chose. Node colours can be adjusted in the

same way but in this case the user can change both the outline colour and the fill

colour of the node. The last subsection configures the sizing of the edges and nodes.

The thickness of the edges can be adjusted (in pixels) and the diameter of the nodes

can be adjusted (in inches).

52 CHAPTER 5. SOFTWARE

5.2 Create and Customize Graphs

To create a graph the user must first select from the dropdown labeled “Select Graph

Type”. There is a standard list of known graphs; however the dropdown will also list

graphs previously saved in .grphc files. Once a simple graph is selected the user can

adjust the various aspects of the graph. The user may then drag and drop their graph

onto the canvas for further editing and saving. The user can interact with the graph

by using one of the several radio buttons on the bottom panel. This will change the

mode in the canvas.

5.2.1 Freestyle Mode

The Freestyle mode allows the user to create nodes and edges directly on the canvas.

The nodes are generated by double clicking on the canvas. The attributes of the

node and edges (colour, size, etc.) are what were in the “Create Graph” tab before

the graph was dragged to the canvas. A user can add edges between two nodes by

right clicking on the two nodes to be joined. Should the user create an edge between

two different graphs the program will combine these graphs into one. With this mode

the user has the ability to create any graph. If a graph is not easily constructible

from the built-in simple types then the user will be able to create and save a new

graph. Thus expanding their own library.

5.2.2 Join Mode

If the user wishes to join two simple graphs they may select the “Join Mode” radio

button. In this mode, the user has the option to join graphs by one node or two

nodes. The joining of the two graphs are handled differently based on how many

nodes the user has selected to join. If the user has selected one node from each of

the graphs, upon pressing the ‘J’ key, the second node the user selected will move to

the graph that contains the first node, and the two nodes are identified ; that is, they

have become one single node. The second selected node will be removed and the first

selected node will collect all the edges associated with that second node. If the user

5.3. SAVE AND LOAD GRAPHS 53

has selected two nodes from each of the graphs, the second graph will rotate and then

move to the first graph. The two nodes from the second graph will be deleted, and

the first two nodes will collect the edges from the second two nodes, respectively. In

both cases, a new graph object will be created to be the parent of the two graphs

that were joined.

5.2.3 Delete Mode

The user can click on a node to have the node and the edges that are incident to that

node removed from the graph. An edge can be removed with a single mouse click. If

the user double clicks on the graph the entire graph will be removed from the canvas.

5.2.4 Edit Mode

Edit mode allows the user to move nodes around in a graph via a mouse drag. Edges

incident to the moving node will update their positions accordingly.

5.2.5 Drag Mode

Drag mode, as the name implies, allows the user to just move the entire graph around

the canvas via mouse drags.

5.3 Save and Load Graphs

The user can press Ctrl-S to bring up the save dialog window. The user has a large

selection of file formats in which the graph can be saved. The majority of these are

image file formats such as .png, .jpeg, .tiff and .svg to name a few.

If the user saves their graph into a .grphc file they can use this graph later in

Graphic. Loading graphs is done automatically by Graphic when the program is

launched or when a new .grphc file is created. Graphic checks a specific directory,

named graph-ic, to look for .grphc files. The program will add these custom graphs

to the dropdown list of graphs for the user to select. To delete a custom graph the

54 CHAPTER 5. SOFTWARE

user must locate the specific directory and delete the particular .grphc file or re-name

it so that it doesn’t have a .grphc extension. Graphic has several image file formats

as well.

Chapter 6

Conclusion and Further Work

The goal of this thesis was to improve upon and add features to Grapha. After

evaluating the possible ways of doing this, Grapha was entirely rewritten using a

different language and framework and renamed to Graphic. The additional features

of Graphic allow the user to further customize their graphs and provide additional

output formats in which their graphs can be saved. The user is now able to delete

individual nodes and edges, as well as entire graphs. The user can also create their

own custom graphs by positioning nodes by hand and adding the edges as needed.

The user can also move nodes around within a graph and join graphs. Graphic

provides more options for the user while still providing an easy-to-use interface.

6.1 Future Work

Even with the new features added to Grapha there are still other improvements that

could be made and additions that could be included.

6.1.1 Fixes

While most of the bugs in the program have been removed, there are still a few minor

ones left. One such bug exists in the “freestyle” mode. Under certain circumstances,

when a user adds an edge the edge won’t be drawn between the nodes. Instead the

55

56 CHAPTER 6. CONCLUSION AND FURTHER WORK

edge will be drawn by itself away from the graph. The user is able to fix this by

moving one of the edge’s nodes around. The adjust method in the Edge class will

redraw the edge in the correct position.

6.1.2 Improvements

There are several improvements that were suggested but were not added to Graphic

due to time constraints. Fully implementing the Qt undo/redo framework would

allow the user to undo every deletion, addition or move on the canvas. The user

would not have to carefully monitor their actions. More options could be included

in the Create Graph tab to further customize nodes and edges. Different fonts and

font colours, for example, could be available for the node labels and edge weights.

Nodes could be drawn in different shapes, such as squares and triangles, while edges

could be directed. Adding curved edges would open up the option to create even

more complex graphs which could also increase Graphic’s library. Other file options

could be added to Graphic, depending on requests from users. The Edit mode could

be enhanced to allow the graph to be rotated and resized on the canvas. The Edit

Graphs tab could be improved upon by providing a visual aid to help identify which

node or edge the user is editing. Editing graph attributes on this tab could also be

added so the user could adjust the size and rotation of sub-graphs or entire graphs.

Finally, the user could select what measuring system to use in the program, whether

it is points, centimeters or inches.

6.2 Conclusion

The goal of this thesis was to improve upon Grapha by improving existing or adding

features and to provide the user with a more powerful graph drawing program. To

accomplish this the program was rewritten with new features. Graphic still maintains

Grapha’s goals while also being a robust and powerful program. In conclusion, while

Graphic does not implement every conceivable graph drawing tool, it successfully

demonstrates that such a tool can be implemented using Qt, and it provides a tool

6.2. CONCLUSION 57

which can meet many needs of people who wish to create aesthetically-pleasing graph

drawings.

58 CHAPTER 6. CONCLUSION AND FURTHER WORK

Bibliography

[1] Qt Documentation: QGraphicsItem Class, 2015. URL http://doc.qt.io/qt-

5/qgraphicsitem.html.

[2] Qt Documentation: QGraphicsScene Class, 2015. URL http://doc.qt.io/qt-

5/qgraphicsscene.html.

[3] Qt Documentation: QGraphicsTextItem Class, 2015. URL http://doc.qt.io/

qt-5/qgraphicsitexttem.html.

[4] Qt Documentation QGraphicsView Class, 2015. URL http://doc.qt.io/qt-

5/qgraphicsview.html.

[5] Qt Creator, 2015. URL http://www.qt.io/ide/.

[6] Qt Documentation: Signals and Slots, 2015. URL http://doc.qt.io/qt-4.8/

signalsandslots.html/.

[7] Qt Documentation: Qt Widgets, 2015. URL http://doc.qt.io/qt-5/

qtwidgets-index.html.

[8] big think: Bjarne Stroustrup “Why I Created C++”, 2016. URL http:

//bigthink.com/experts/bjarnestroustrup.

[9] Wolfram Alpha. Complete Graph, 2016. URL http://mathworld.wolfram.

com/CompleteGraph.html.

59

http://doc.qt.io/qt-5/qgraphicsitem.html
http://doc.qt.io/qt-5/qgraphicsitem.html
http://doc.qt.io/qt-5/qgraphicsscene.html
http://doc.qt.io/qt-5/qgraphicsscene.html
http://doc.qt.io/qt-5/qgraphicsitexttem.html
http://doc.qt.io/qt-5/qgraphicsitexttem.html
http://doc.qt.io/qt-5/qgraphicsview.html
http://doc.qt.io/qt-5/qgraphicsview.html
http://www.qt.io/ide/
http://doc.qt.io/qt-4.8/signalsandslots.html/
http://doc.qt.io/qt-4.8/signalsandslots.html/
http://doc.qt.io/qt-5/qtwidgets-index.html
http://doc.qt.io/qt-5/qtwidgets-index.html
http://bigthink.com/experts/bjarnestroustrup
http://bigthink.com/experts/bjarnestroustrup
http://mathworld.wolfram.com/CompleteGraph.html
http://mathworld.wolfram.com/CompleteGraph.html

60 BIBLIOGRAPHY

[10] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis.

Algorithms for Drawing Graphs: An Annotated Bibliography. Computational

Geometry, 4:235–282, 1994.

[11] cplusplus.com. C++: A Brief Description, 2015. URL http://www.cplusplus.

com/info/description/.

[12] Reinhard Diestel. Graph Theory. Chapter 1. pages 1–33. Springer, 2010.

[13] Institute for Systems Biology. Biofabric, 2014. URL http://www.biofabric.

org.

[14] The Eclipse Foundation. Eclipse, 2016. URL https://eclipse.org/home/

index.php.

[15] Wilbert O. Galitz. The Essential Guide to User Interface Design. John Wiley

& Sons, Inc., Canada, 2008.

[16] Meurs HRM. Meurs Challenger, 2015. URL http://www.q1000.ro/

challenger/.

[17] B.J. Jansen. The Graphical User Interface: An Introduction. SIGCHI Bulletin,

30(2):22–26, 1998.

[18] Jeff Johnson. GUI Bloopers 2.0: Common User Interface Design Don’ts and

Dos. Elsevier Inc, Burlington, 2008.

[19] Michael Junger and Petra Mutzel. Chapter 1: Introduction. Graph Drawing

Software, pages 1–3. Springer, 2004.

[20] W.J.R. Longabaugh. Combing the Hairball with Biofabric: A new approach for

visualization of large networks. BMC Bioinformatics, 13(275), 2012.

[21] Kevin Matz. The Gestalt Laws of Perception and how to use them in

UI Design. http://architectingusability.com/2011/05/26/using-the-

gestalt-laws-of-perception-in-ui-design/, 2015.

http://www.cplusplus.com/info/description/
http://www.cplusplus.com/info/description/
http://www.biofabric.org
http://www.biofabric.org
https://eclipse.org/home/index.php
https://eclipse.org/home/index.php
http://www.q1000.ro/challenger/
http://www.q1000.ro/challenger/
http://architectingusability.com/2011/05/26/using-the-gestalt-laws-of-perception-in-ui-design/
http://architectingusability.com/2011/05/26/using-the-gestalt-laws-of-perception-in-ui-design/

BIBLIOGRAPHY 61

[22] Kevin Mullet and Darrell Sano. Designing Visual Interfaces. Sun Microsystems,

Inc, Mountain View, 1995.

[23] The Glade Project. Glade — a User Interface Designer, 2014. URL https:

//glade.gnome.org.

[24] Helen C. Purchase, Robert F. Cohen, and Murray I. James. An Experimental

Study of the Basis for Graph Drawing Algorithms. Journal of Experimental

Alorithmics, 2(4), 1997.

[25] Microsoft Research. Microsoft Automatic Graph Layout, 2015. URL http:

//research.microsoft.com/en-us/projects/msagl/.

[26] Tulip. Tulip: Better Visualization Through Research, 2015. URL http://tulip.

labri.fr/TulipDrupal/.

[27] Lingfeng Wang and Key Chen Tan. Modern Industrial Automation Software

Design. Chapter 5. pages 53–58. John Wiley & Sons, Inc., 2006.

[28] Nicolas J. Wetmore. Grapha: Graph Generating Software. Honours dissertation,

Acadia University, 2014.

[29] yWorks. yed graph editor: High Quality Diagrams Made Easy, 2015. URL

http://www.yworks.com/en/products/yfiles/yed/.

https://glade.gnome.org
https://glade.gnome.org
http://research.microsoft.com/en-us/projects/msagl/
http://research.microsoft.com/en-us/projects/msagl/
http://tulip.labri.fr/TulipDrupal/
http://tulip.labri.fr/TulipDrupal/
http://www.yworks.com/en/products/yfiles/yed/

	Abstract
	Introduction
	Grapha
	Graph Drawing Software
	yED
	Tulip
	Meurs Challenger
	Microsoft Research AGL
	BioFabric

	The Goal

	Requirements
	Grapha Walkthrough
	Select a Graph
	Edit a Graph
	Saving and Loading Graphs
	Combining Graphs

	Improvements
	Graphs
	Attributes of a Graph

	File Output Formats
	Joining Graphs
	Graphical User Interface
	Additional Features
	Freestyle Graph Creation
	Graph Editing
	Graph Component Deletion

	Design
	Language Choices
	C++
	Qt Creator

	Review of Grapha's Design
	Grapha.html
	Graph.js
	UserInteraction.js
	SaveLoadDelete.js
	RenderConnect.js
	Outputs.js
	Objects.js
	HelperFunctions.js
	GraphTypes.js

	Redesign
	User Interface
	Pre-defined Graphs
	Attributes of a Graph
	User Modes
	Join Mode
	Delete Mode
	Edit Mode
	Freestyle Mode
	Drag Mode

	Graphic Classes
	Node Class
	Edge Class
	Label Class
	Graph Class
	Preview Class
	CanvasView Class

	Implementation
	MainWindow Class
	Graphic Classes
	QGraphicsView Class
	QGraphicsScene Class
	QGraphicsItem Class
	Node Class
	Edge Class
	Label Class
	Graph Class

	BasicGraphs Class
	Features Added During Development
	Undo Node Move Features
	Snap-to-Grid Feature
	Editing Individual Nodes and Edges on Canvas

	Challenges During Development
	Screen Resolution and Measurements
	Widget Styles across Operating Systems
	File Browser differences

	Software
	Overview of Graphic's User Interface
	Graph Input Fields
	Node and Edge Input Fields

	Create and Customize Graphs
	Freestyle Mode
	Join Mode
	Delete Mode
	Edit Mode
	Drag Mode

	Save and Load Graphs

	Conclusion and Further Work
	Future Work
	Fixes
	Improvements

	Conclusion

	Bibliography

