
GRAPHA: GRAPH GENERATING SOFTWARE

by

Nicholas J. Wetmore

Thesis submitted in partial fulfillment of the

requirements for the Degree of

Bachelor of Computer Science with

Honours

Acadia University

April 2014

© Copyright by Nicholas J. Wetmore, 2014

This thesis by Nicholas J. Wetmore

is accepted in its present form by the

Department of Computer Science

as satisfying the thesis requirements for the degree of

Bachelor of Computer Science with Honours

Approved by the Thesis Supervisor

Dr. Jim Diamond Date

Approved by the Director of the School

Dr. Darcy Benoit Date

Approved by the Honours Committee

Dr. Matthew Lukeman Date

ii

I, Nicholas J. Wetmore, grant permission to the University Librarian at Acadia
University to reproduce, loan, or distrubute copies of my thesis in microform, paper
or electronic formats on a non-profit basis. I, however, retain the copyright in my

thesis.

Signature of Author

Date

iii

iv

Contents

Abstract xiii

Acknowledgments xv

1 Introduction And Problem 1

1.1 Making Life Easier . 2

1.2 Problems With Generating Graphs Quickly 4

1.2.1 The Goal Of Grapha . 4

1.2.2 Basic Graphs . 4

1.2.3 Manipulating Graphs . 5

1.2.4 The Details Of A Graph . 6

1.3 Compound Graphs . 6

1.4 User Interface . 8

1.5 Graph Knowledge . 9

1.6 Basic Graph Examples . 10

1.7 Developing Grapha . 10

2 Research And Related Solutions 15

3 Design And Software Engineering 21

3.1 Goals of Grapha . 21

3.2 Programming Languages . 23

3.2.1 HTML5 . 23

3.2.2 CSS . 24

v

3.2.3 JavaScript . 25

3.3 Cross-Platform Code . 26

3.3.1 Language Choices . 26

3.3.2 Saving and its Challenges . 28

3.4 Object-Oriented Code . 30

3.5 Graph-Related Objects . 32

3.5.1 The GraphType Object . 32

3.5.2 The SimpleGraph Object . 36

3.5.3 The ComplexGraph Object 37

4 Implementation and Software Explanation 41

4.1 Manipulating Graphs . 41

4.1.1 How Objects Are Used, Saved, and Loaded 41

4.1.2 Creating, Saving, and Editing a Basic Graph 43

4.1.3 Combining and Editing Compound Graphs 46

4.2 Generating Lists of Nodes and Edges 49

4.2.1 The Node and Path objects 49

4.2.2 Lists of Nodes from Basic Graphs 51

4.2.3 Lists of Nodes from Compound Graphs 54

4.2.4 Generating Lists of Edges . 55

4.3 Rendering and Outputs . 56

4.3.1 Rendering the Graph and Obtaining Raster-Based Images . . 56

4.3.2 Obtaining Vector-Based Images 57

5 Software Use 65

5.1 Overview Of The User Interface . 65

5.2 Make New Graphs . 67

5.3 Edit Basic Graphs . 70

5.4 Save, Load, and Delete Graphs . 72

5.5 Combine Saved Graphs . 73

5.6 Edit Combined Graphs . 75

vi

6 Conclusion and Future Work 79

6.1 Conclusion . 79

6.2 Future Work . 81

Bibliography 85

vii

viii

List of Tables

2.1 Tables of functionality for researched software. 19

6.1 Tables of functionality for researched software and Grapha. 80

ix

x

List of Figures

1.1 A Compound Graph . 7

1.2 A Bipartite Graph . 10

1.3 A “Round Layout” Graph . 11

1.4 A Cycle Graph . 11

1.5 A Star Graph . 12

1.6 A Wheel Graph . 12

1.7 A Path Graph . 12

1.8 The Petersen Graph . 13

1.9 A Balanced Binary Tree . 13

2.1 ILLUMINATIONS Graph Generator 17

2.2 GraphTea Software Use . 18

3.1 The code for initializing the bipartite graph type 31

3.2 The parameters necessary to initialize a graph type object 32

4.1 Two node and five node horizontal lines 53

4.2 Five nodes generated with the string “roundOutside” 54

4.3 A bipartite graph with a path graph attached 60

4.4 A picture of a bipartite graph in SVG 63

5.1 Downloading Grapha . 66

5.2 Choosing A Graph Type . 68

5.3 Options Of Generating A Graph . 69

5.4 Editing Basic Graphs . 71

xi

5.5 Save, Load, and Delete Graphs . 73

5.6 Combining Graphs . 74

5.7 Loading Graphs To Combine . 75

5.8 Edit Combined Graphs . 76

xii

Abstract

Many people who generate graphs for their documents are faced with a small number

of tools from which to choose. The problem is that these tools seem to either be very

powerful and take a long time to produce professional graphs or they are very simple

and offer little or no way in which to output the graph. This makes graph generating

currently very time consuming. This thesis describes the development of a piece of

software named Grapha which solves some of these problems.

Grapha is a piece of software that was designed and developed to facilitate the

generation of many different graphs. The user will first generate some “basic” graphs.

Once he was done this, the basic graphs can then be combined together to create more

complex graphs. Any generated graph is made available by the software to be output

in many formats. These formats can be images, both raster-based and vector-based,

or programmatic representations. In addition, Grapha allows a user to edit, save or

load any of his graphs.

This thesis is focused on exactly what the Grapha graph-generating software is

and what was involved in developing it. It goes over the various design challenges

that were overcome while creating the software. In addition, there is a summary of

what the final piece of software looks like, and how users will utilize all of its features.

This thesis covers how the program interacts with the user and what type of results

can be achieved from using the software. The techniques and code that were used to

make the design a reality are also discussed within this thesis.

xiii

xiv

Acknowledgments

I would like to thank Dr. Jim Diamond for supervising this thesis, providing plenty

of useful and helpful feedback, and being an Alpha and Beta tester.

I would like to thank Kate-Lynn MacPhail for testing the software and making

helpful comments upon the design and user interface.

I would like to thank my friends and family for still being there for me when I

finish writing this thesis and am with them again.

xv

xvi

Chapter 1

Introduction And Problem

In many different areas of study, various visual representations are used in order to

explain or examine certain concepts. There is a subset of these representations known

simply under the title of “graphs” which consists of only vertices (nodes) and edges

(lines). A graph is a mathematical concept which consists of pairs of vertices which

are connected by edges. This is represented mathematically by G = (V,E) where V

is a set of vertices and E is a set of edges. Combined, the two sets allow the graph to

represent a set of relationships. The relationships are represented by the edges and

the objects being related are represented by the vertices.

Within a graph a vertex does not need to be connected to another vertex; such

a relationship is represented by the absence of an edge. Also any vertex could be

connected to any other vertex via an edge. All of these connections, when combined

together, make up the graph. Edges, when represented visually, are lines which

connect two vertices together while vertices are visually represented by circles. The

combination of circles and lines represent the entire graph in a visual format. It is

this visual representation which is the focus of this thesis.

The edges between nodes, as well as the vertices themselves, can all be labelled.

A label upon an edge usually represents a weight (or a cost) which is associated

with that edge. This, for example, could mean that there is a cost associated with

travelling from one vertex to another, and the label is the quantity of that cost. A

label upon a node is used to name and identify the labelled node. Often every node

1

CHAPTER 1. INTRODUCTION AND PROBLEM

in a graph is named with a unique name. However, edges do not always have an

associated weight.

Visualizations of the sort described here are most common in graph theory. The

study of graph theory is useful for various mathematical, biological, physical, and

computational areas of study. Some applications for these graphs include: computer

networks, databases, molecular chemistry, condensed matter physics, and many more

areas [3, 17, 5]. The quick and simple generation of visual representations of such

graphs using computer software will be the focus of this thesis. For the purpose of

this thesis, the word “graph” is used to refer to the visual representation and not the

mathematical concept.

1.1 Making Life Easier

Software development today is mostly driven by a goal to make users’ lives easier.

The point of developing the software for this thesis was to make life easier for the

person who generates graphs on a regular basis. Such a person, if using a non-graph

oriented graphical editor (such as MS paint or Gimp), will find himself with a lot

of work ahead of him just to create one graph. The problem with this is that even

after a lot of hard work, the graph still might not come out looking professional. The

resultant graph’s quality will be tied to the skills of the person generating the graph.

If the person has little to no experience making pictures on a computer, the result

could look unprofessional and may even be difficult to read.

Software whose use is to make professional-looking graphs already exists (see re-

lated work, Chapter 2). However, many of these implementations are either difficult to

use, (an example being Graphviz [16]), or do not have fully featured output options,

causing them to be useless for certain people. The biggest difficulty with Graphviz

is the fact that graphs are not created or edited visually. The software makes use

of a command line or text box in which the user inputs the code for his graph. It

appears as if the development of this software was not focused on the user experi-

ence but instead was focused on developing the languages that represent the graphs

(language examples include dot, neato, and dotty [15]). Such software also requires

2

1.1. MAKING LIFE EASIER

more time than necessary to generate basic graphs, which may need to be generated

extremely often. This means that there is a gap in graph-generating software. There

is no quick and easy option which allows for both quick generation of basic graphs

and outputting the created graph in many different formats.

Another downfall of such dedicated software is that it can sometimes require a set

up or installation time. This set up time makes the software tough to use for someone

who may not generate graphs very often, but does wish to generate a graph every

once in awhile. In order to eliminate this set up time we can conceivably offer an

on-line solution which allows the user to use it when he wishes. The benefit of on-line

software is that the user does not need to worry about maintaining it or installing it

on his computer. This presents another problem, which stems from the idea of on-line

applications: they can only be used on-line.

There are already on-line software solutions which generate graphs (such as

Illuminations Graph Creator [9], Creately [1], or GraphJS [8]). The problem

is that these programs do not interact with a personal computer in the most useful of

ways. This is evident in the fact that many such solutions to graph generation do not

include a way to usefully output the graph that you have generated. Many also do

not allow you to save your graphs locally to your computer, and many do not provide

a way to use the software when you do not have an internet connection (covered in

depth in Chapter 2). For someone who generates graphs on a daily basis, he may

need the ability to generate a graph sometime when he is not able to access an in-

ternet connection. Throughout this paper the technologies that are used which allow

the graph-generating software created for this thesis (named “Grapha”) to overcome

these limitations will be addressed.

Finally, there are very few programs which can be run on all of Windows, Android,

Mac OS, Linux, and iOS, but to be fully accessible Grapha was developed with all of

these platforms in mind. It not only runs on each platform but the difficulty of using

it on mobile platforms is not such that Grapha becomes tough or challenging to use.

This is discussed more in Section 5.1.

3

CHAPTER 1. INTRODUCTION AND PROBLEM

1.2 Problems With Generating Graphs Quickly

1.2.1 The Goal Of Grapha

The software solution (named “Grapha”) written for this thesis is not meant for

powerful customization or lengthy and specific graph generation. Instead, Grapha’s

purpose is to provide the quickest possible way to generate and combine basic graphs.

In this manner, anyone using Grapha who wishes to generate basic graphs on a regular

basis will not need to spend a lot of time on them. The graphs generated by Grapha

are symmetrical (with evenly spaced vertices), easy to read, and professional-looking.

The attributes of the graph (its size, number of vertices, the way that the graph is laid

out, its edge weights, and its vertex labels) are all easily customizable and Grapha

will automatically generate a new graph based upon these attributes. In this way

Grapha’s use is to generate specific “basic” graphs and save the time of the person

who generates such basic graphs regularly.

The final goals of Grapha will be discussed fully in Section 3.1 after some discussion

of other software solutions in Chapter 2.

1.2.2 Basic Graphs

Generally, in this thesis the term “basic graph” refers to a graph which is used by

many graph theorists frequently (some sample basic graphs are shown in Section 1.6).

The idea of what the term “basic graph” refers to is not set in stone. While some

people may believe that a bipartite graph is common and basic, others may rarely

generate bipartite graphs (or may think of them as complex non-basic graphs). This,

combined with the fact that there is a limitless number of graphs that users may want

to generate, leaves us with a problem: if we want to allow quick generation of basic

graphs, we will need to code a large repertoire of graphs.

For the purpose of this thesis, a basic graph is a graph type which is built into

Grapha (that is contained within its repertoire of basic graphs). Grapha has been

designed to not only hold a repertoire of graphs for quick generation, but also to

allow increasing the size of this repertoire in a relativity easy manner for a compet-

4

1.2. PROBLEMS WITH GENERATING GRAPHS QUICKLY

ent JavaScript programmer. It should even be possible for someone who is familiar

with object-oriented programming, but who knows nothing about the programming

language “JavaScript”, to, with a little more time, add a new graph to the reper-

toire. The programming style used to enable this functionality is discussed further in

Section 3.5.1.

1.2.3 Manipulating Graphs

In order to remain simple and quick, Grapha’s user interface requires a very small

number of clicks to actually generate a graph and acquire it as output. Although

quick and easy, this simplicity gives the user less power and influence on the final

graph product. The user does not have access to manipulate the small details of the

final graph. However, there are other solutions which allow every detail of the graph

to be manipulated and specified. Grapha’s purpose is not to replace these software

solutions but to provide generated graphs quickly. Furthermore, due to the way in

which Grapha stores a graph object, the graphs that it generates are not confined to

be used only with Grapha. Grapha’s outputs allow generated graphs to be useful to

other programs as well.

The swiftness of Grapha, however, does not leave it crippled during the moment

that the user wishes to specify a small manipulation. Grapha comes equipped with a

wide range of ways in which to output the graph. The user can output it as one of

many raster-based image types or as one of a number of vector-based image types. In

the latter case it gives the user the code which would be used to generate the image

in his program of choice. In this manner Grapha allows a user to take the graph

that he quickly generated, and manipulate the graph with another piece of software.

This gives Grapha the power to be used alongside a user’s graph-drawing program

of choice. It allows a user to save time generating a graph (especially if it is a basic

graph which he will generate variations of many times over), as well as detailing that

graph to fit his current scenario.

Another similar problem should be apparent here: how do we know which output

formats users will wish to use? For raster-based images, the answer is quite simple:

5

CHAPTER 1. INTRODUCTION AND PROBLEM

cover all of the basics and let future programmers change it from there. For vector-

based images, the answer is not as simple.

It appears that every vector-based method to draw graphs comes with its own

standard, sometimes even its own code. This means that, for every user program, we

will need to have an output that allows the graph to be translated into a different

code and standard. The solution to this problem is similar to the solution to the

basic graph’s problem. We need to provide a basic repertoire of the most popular

vector-based outputs and allow other programmers to expand this as needed. By

doing this we open the doors to every vector-based program. As long as there is

someone willing to write a translation module for Grapha, that person will be able to

expand the software’s repertoire and it will be able to support any program. This is

possible since Grapha was designed modularly, and with such expansion in mind.

1.2.4 The Details Of A Graph

No matter how swift we make a program, if there are no controls at all, then the

program is essentially useless. Grapha does allow a user to tell it the specifics of the

graph that he wants generated. Using these controls, the user can specify which basic

graph type that he wants to generate. After that has been selected, he inputs the

graph’s size, the size of the graph’s text, the number of vertices, as well as the labels

that each vertex and edge should have. This allows the user to fully customize the

look, scale, and labels of any basic graph. The only edits that cannot be made in

Grapha itself are the removal, addition, styling, or repositioning of edges and vertices

(see Chapter 5 for further discussion).

1.3 Compound Graphs

For the purpose of this thesis a “compound graph” is defined as a graph in which there

are multiple basic or compound graphs joined together. These graphs form a larger

more complex graph when joined (for an example, see Figure 1.1). In fields where

graphs are used it is not uncommon to want to connect multiple graphs together.

6

1.3. COMPOUND GRAPHS

Once graphs begin to be connected together however, they suddenly become more

complex and more difficult to generate. In order for a user to combine multiple graphs

in a standard graphical program the user may need to perform a lot of copying and

pasting. He may need to resize certain parts of his new compound graph and he may

also wish to rotate the basic graphs held within.

v0
v1

v2
v3

v4

v5
v6

v7
v8

v9

v10
v11

v12

v13

v14v15

v16

Figure 1.1: A Compound Graph

These compound graphs can be extremely useful. As pictured in Figure 1.1 a

compound graph can model many connections which, normally, would be difficult to

otherwise visualize.

Once a user has generated a basic graph, outputting that graph is not his only

option. Instead, if the user has a more complex graph to make, he can begin to

expand one graph by attaching other graphs (that he has made) to it. This can allow

a user to (very quickly) expand a graph to model a more complex situation. The

ability to attach multiple graphs together however, comes with a set of problems.

The first problem is, after two professional-looking graphs have been combined,

the compound graph needs to look just as professional. The second is that the user

now needs additional controls to allow the complex graph to appear the way that he

wants. We will need to define a few more ways in which the user can interact with

complex graphs so that he can make them appear the way that he wishes. Finally,

we need to figure out how to connect the two graphs and how to generate the proper

outputs for each graph. These problems are addressed and discussed in Section 4.2.3.

7

CHAPTER 1. INTRODUCTION AND PROBLEM

As with the basic graphs, each complex graph can be saved or output in any

manner that the user desires.

1.4 User Interface

In order for Grapha to be usable it must have a convenient and interactive interface.

This interaction will determine the usefulness and success that Grapha will achieve.

Bearing in mind that Grapha is written in JavaScript, its primary running environ-

ment will be inside a web browser. This allows Grapha to be accessed on-line by a user

as long as it is being hosted by a web server. Despite having these web application

roots, though, Grapha can also be run locally. For any locally running application to

be successful it will need to have access to the same functions that any other local

application would have (these include saving and loading files, as well as taking user

interaction). This means that developing a user interface for Grapha is not very dif-

ferent from developing a user interface for a desktop application. This is achieved

through the use of the HTML and CSS languages, as discussed in Chapter 3.2.

In order to create a usable interface, the interface was given to some users for

testing. It is one thing to claim that Grapha is quick to use or useful and another to

have users actually produce results with the program. Throughout the development

process, a few users were engaged to ensure that the graphical user interface did

not become detached from the project. The user interface uses the HTML and CSS

framework called Foundation (created by Zurb [23]). The framework provides a

suitable default look and feel, as well as most of the styling of Grapha.

The layout and user interaction was programmed specifically for Grapha in hopes

that it would allow the flow of creating a graph to be smooth and easy. The layout

also allows for mobile platforms to render the GUI in such a way that the program is

still fully usable, without much extra user effort.

8

1.5. GRAPH KNOWLEDGE

1.5 Graph Knowledge

Most of the underlying knowledge about graphs that the reader needs to know was

outlined in Sections 1.2.2 and 1.3. The reader will also need to know about some of the

different basic graphs. Section 1.6 contains examples of each basic graph referenced

in this thesis. Furthermore, an understanding of raster- and vector-based graphics,

as well as the differences between them, will be required.

There are a few ways to go about generating a picture or graphic. Two of the

most popular types of graphics are raster and vector graphics. A raster-based image

or graphic refers to an image which is represented in the computer by a set of pixel

colour values. When a raster-based image is rendered the information of each pixel

is turned into a coloured dot. These dots (or pixels) are then arranged together to

generate the image. A vector-based image is an image which is represented by a set

of rules or commands. When such an image is rendered the commands are executed

and the image is generated.

For example, if a user wants to draw a four-by-four green box with a blue line on

the top, a raster-based image would contain the information for four blue pixels, and

then the information for 12 green pixels (this is a very simplified explanation, but it

is sufficient for the purpose of this paper). When a program is asked to render said

picture, the pixels will simply be drawn on the screen one by one until all of them

have been drawn. An equivalent vector-based image contains a command for drawing

a green box and a command for drawing a blue line across the top of the green box.

When it is rendered, the commands are executed, and the pixels are generated, then

drawn to the screen.

Raster-based images are usually large for large images, while vector-based graphics

are usually smaller. This is due to the fact that a single command in a vector-

based graphic may tell a program how to render hundreds or millions of pixels, while

the raster-based image would need to specify each pixel’s properties individually. A

vector-based image, however, can take longer to render to the screen, because all of the

commands need to be executed each time it is rendered, before the image is able to be

shown by the computer. Vector-based images are also scalable, whereas raster-based

9

CHAPTER 1. INTRODUCTION AND PROBLEM

images are not. Currently, raster-based images are also easier to use and are more

widely supported. This is true because most operating systems are pre-bundled with

raster-based image viewers, however fewer are accompanied by vector-based image

viewers.

1.6 Basic Graph Examples

The basic graphs shown in Figures 1.2 through 1.9 will be assumed to be known

throughout this thesis. Each example of a basic graph shows a specific choice of

parameters. For example, Figure 1.2 shows a bipartite graph with four vertices in the

first partition and five vertices in the second partition. These two numbers are not

constants and can be changed to any other positive integers. A similar idea applies

to the other examples shown here.

v0 v1 v2 v3

v4 v5 v6 v7 v8

Figure 1.2: A Bipartite Graph

1.7 Developing Grapha

Throughout this thesis, the theme will be a walk-through of exactly how Grapha

was conceived and developed. The technologies used to create the software will be

discussed and the programming tactics and decisions will be thoroughly examined.

The next chapter outlines some of the background knowledge needed to continue with

this thesis. Starting in Chapter 3, the process of engineering the software from the

ground up will be discussed.

10

1.7. DEVELOPING GRAPHA

v0

v1

v2

v3v4

v5

v6

Figure 1.3: A “Round Layout” Graph

v0 v1

v2

v3

v4v5

v6

v7

Figure 1.4: A Cycle Graph

11

CHAPTER 1. INTRODUCTION AND PROBLEM

v0

v1

v2

v3v4

v5

Figure 1.5: A Star Graph

v0

v1 v2

v3

v4

v5

v6v7

v8

v9

v10

Figure 1.6: A Wheel Graph

v0 v1 v2 v3 v4

Figure 1.7: A Path Graph

12

1.7. DEVELOPING GRAPHA

v0

v1

v2v3

v4

v5

v6

v7v8

v9

Figure 1.8: The Petersen Graph

v0

v1 v2

v3 v4 v5 v6

v7 v8

Figure 1.9: A Balanced Binary Tree

13

CHAPTER 1. INTRODUCTION AND PROBLEM

14

Chapter 2

Research And Related Solutions

In the graph theorist’s world Grapha is not the first or only piece of graph-generating

software to exist. Many more software solutions exist which have goals of generating

graphs for the user. This chapter will focus on some popular solutions to graph

generation and how they are both similar and different from the software outlined in

this thesis. The chapter will also talk about the various research which was required

to create Grapha.

During a search for graph-generating software, users will find that most of the

solutions they come across will fit into three different categories.

The first is an approach which comes from a simple point of view. In this approach

generating a graph is done via a small and simple point and click interface, with a

few options to back it up. In these software solutions, users are given few options

(usually essentials) and a limited way to output the graph that they have created. In

addition, there is very little automation in the software which causes a user to have

to specify everything manually. Examples are: ILLUMINATIONS Graph Creator [9]

and Creatly [1].

The second approach is to make the software and its functions focused upon

graph theory. This development approach allows the software not only to create

and edit graphs but it also allows the user to run graph theoretic algorithms on

the created graph. These tools usually take an average (relative to other graph-

generating programs) amount of time to learn and use. They may also require that

15

CHAPTER 2. RESEARCH AND RELATED SOLUTIONS

the user learn a specific language for dealing with the graphs (such as a computer

programming language or a graph description language). Good examples are Sage

(which is primarily used for math but has graph functions) [4], [22] and GraphTea [21].

The last paradigm is to have an extremely complex and powerful piece of software.

The user is expected to spend a very large amount of time with the software, both

learning and generating graphs. This allows the user to output the graph in a variety

of ways as well as specify every detail of the graph. In most cases the software also

gives the user the ability to begin interacting with the graph and explore it with

advanced two dimensional or three dimensional visuals. Similar to the second type

of graph software there is usually an ability to perform graph theoretic algorithms on

any graph in the program. Good examples include GraphViz [16] and Gephi [7].

The first piece of software I will look at is very simple. ILLUMINATIONS devel-

oped it and named it, appropriately, “Graph Generator” [9]. This piece of software

allows a user to create a graph from many places as it is Flash-based and hosted on

a website. The user must have an internet connection and a Flash-enabled device in

order to run the software. Other than that, the software is extremely simple to use.

It can take some time, however, to create intricate graphs due to the fact that each

vertex and edge must be manually positioned and specified. In addition, the program

has no output methods; instead of being a resource for generating graphs to use, it

appears to be a resource simply for building them, performing a few small algorithms

on them, and then moving on.

A typical use of the software is shown in Figure 2.1. This piece of software was

chosen to be discussed in this thesis because it is a good representation of entry level

graph-generating software. The use of discussing this piece of software is to outline

a group of software solutions to graph generation which all have similar properties.

There are similar pieces of software in the same group as Graph Generator which

are powerful and can create any graph that the user wishes, but they lack speed and

the ability to transfer those graphs elegantly to another program.

Creatly is another example of such a program; this piece of software does not focus

specifically on graph generation, however, generating graphs is one of its capabilities.

It also lacks the ability to automate any graph generation and can take quite a bit

16

Figure 2.1: ILLUMINATIONS Graph Generator

of time to create a usable graph. Although it does have more output methods than

IMMUNIMATIONS Graph Generator the fact that it is not focused on generating graphs

makes it fall short in that area.

The next piece of software that will be looked at is GraphTea. GraphTea is perhaps

the closest piece of software to Grapha that could be found. GraphTea allows a

user to generate a graph and it also has a small repertoire of basic graphs which

can be automatically generated. GraphTea is also powerful in that a graph can be

customized. A graph can be specified and dragged to desired dimensions. This means

that creating a professionally drawn graph can take quite a bit of time. Also, learning

the software takes a small amount of time. GraphTea also focuses primarily on graph

theory algorithms which it is very adept at solving.

17

CHAPTER 2. RESEARCH AND RELATED SOLUTIONS

Overall, the GraphTea software fits into the second category of graph-generating

software. It does take time to learn and it takes time to draw professional graphs but

it will not run on-line and it cannot be accessed by any computing device (computer,

phone, tablet, etc.); it must be installed on Windows, Linux, or Mac OS. This in-

creases the start up time required to get the program running. Also, the fact that it

needs to be installed means that it cannot be used casually and on the fly when the

user needs a graph generated quickly. It allows for outputting a graph in a raster-

or vector-based language (such as LaTeX) but it does not include SVG. Figure 2.2

shows an example of a graph created in GraphTea.

Figure 2.2: GraphTea Software Use

The final pieces of software which will be reviewed are GraphViz [16] and Gephi [7].

Graphviz is a commonly used application for generating graphs and relies upon graph

description languages, in which the user writes his graphs, to generate the graphs. Its

most commonly used graph description languages are Neato and Dot [15]. GraphViz

and Gephi can both be used very powerfully to produce any graph that the user can

imagine and in the case of Gephi can even perform multiple complex algorithms on

18

them. These software solutions are both very powerful and contain plenty of features

and extras, but with these features comes complexity.

Both pieces of software take a very long time to learn and can take even longer

to produce a nice looking graph. Gephi seems to be the more recently developed

solution and allows very advanced visualization of the user’s created graphs. It can

also output graphs into PNG, SVG, or PDF. In contrast, GraphViz seems older and

less refined. It requires users to mainly use commands and write their graphs out in

a graph language in order to achieve their desired graphs.

All of the solutions mentioned here can make the graph-generating user’s life

easier, and each solution has positive points and negative points unique to them.

These points are summarized in Table 2.1.

Table 2.1: Tables of functionality for researched software.

(a) Supported platforms and portability

Software Desktop Mobile Installed On-line Off-line
Graph Creator 3 7 7 7 3

Creately 3 7 3 3 3

GraphTea 3 7 3 7 3

GraphViz 3 7 3 7 3

Gephi 3 7 3 7 3

(b) Outputs

Software Raster-Based Output LaTeX Output SVG Output
Graph Creator 7 7 7

Creately 3 7 3

GraphTea 3 3 7

GraphViz 3 7 3

Gephi 3 7 3

(c) Ease and speed of use

Software Graph Generation Specific Editing Learning Curve Time to Use
Graph Creator 7 3 minimal average

Creately 7 3 average average
GraphTea 3 3 average minimal
GraphViz 7 With Work steep maximal

Gephi 7 3 steep average

19

CHAPTER 2. RESEARCH AND RELATED SOLUTIONS

20

Chapter 3

Design And Software Engineering

This chapter will focus on the design and early development stages of the software

named “Grapha”. Furthermore, this chapter will focus upon the research used to

implement these designs and the methods used to realize the design possibilities.

3.1 Goals of Grapha

Having discussed the positive and negative points of the visual graph-generating soft-

ware which is currently accessible to users, I will outline exactly what Grapha’s goals

are.

Grapha is not meant to compete with the other software solutions available to a

user. Instead, Grapha will focus on having many features to accompany generating

graphs quickly and automatically. Grapha will focus on achieving the goals outlined

below.

Quick Graph Generation Grapha will need a way in which to generate entire

graphs at once without much interaction from the user. This is opposed to

generating graphs in a way which requires the user to specify each detail along

the way.

Quick to Use For a user to use Grapha and obtain output, he should not have to

spend much time. Another way of describing this is in terms of the number of

21

CHAPTER 3. DESIGN AND SOFTWARE ENGINEERING

clicks. There should be a minimal number of clicks required in order to generate

and output a graph.

Easy to Learn The path that the user needs to follow in order to generate a graph

should be apparent and intuitive.

Different Outputs The user should be able to output a graph from Grapha in many

different formats.

Portable Grapha should run on mobile and desktop operating systems as well as

run both on-line and off-line in order to be accessible to a large number of users

in many different locations.

Some of the software solutions mentioned met many of these requirements. There

was no single piece of software which met all those goals at the same time. These goals

propose Grapha to be a piece of software which is quick, easy, useful, and portable,

all at the same time. Grapha focuses on the swift generation of graphs and the quick

combination of those generated graphs. None of the researched software solutions

carry that ability in addition to the other desired traits. GraphTea is the closest

solution to Grapha but it lacks the simpleness and the various output methods that

Grapha has (refer to Table 2.1).

In order to achieve these goals the development paradigm of agile development was

utilized. This development paradigm allowed Grapha to be user-focused. Users were

interacted with throughout the design and implementation of Grapha and the goals

were updated according to the users’ feedback. Agile development allowed Grapha to

remain flexible enough for users to make requests and see them implemented. This

allowed Grapha to change during development and become easy and quick. The idea

of how to make Grapha quick and easy to use was based upon the users’ experiences

with the software.

22

3.2. PROGRAMMING LANGUAGES

3.2 Programming Languages

In order to be prepared for reading the content contained within this chapter, there

are a few things that the reader will need to know ahead of time. The requisite

knowledge includes knowing some general information about graphs and how they

look (all covered in Chapter 1). Furthermore, a bit of general information about the

various computer programming languages which have been used to create the Grapha

is required. These languages include JavaScript, HTML5, and CSS.

3.2.1 HTML5

HTML5 is the newest complete standard for the markup language from the W3

consortium [10]. HTML5 (which stands for Hyper Text Markup Language) is the

main markup language which is used on the internet for telling a browser how to

display a web page. Upon a request for a web page, servers provide HTML, CSS, and

JavaScript to a user’s browser. The browser then interprets the code and lays out the

page.

HTML5 (as opposed to the previous version of HTML) includes new tags for

displaying media (such as music or video) as well as displaying dynamic graphics.

Of most importance for this thesis is the new tag named “Canvas”, which has been

utilized in the Grapha graph-generating software. The Canvas tag allows for raster-

based image creation in a web page. In order to perform this image creation JavaScript

is used to manipulate the contents of the Canvas tag in a pixel by pixel fashion. This

image creation is how Grapha displays an image to the user and allows a user to save

his images as a raster-based output (discussed fully in Section 4.3)

Not every browser is fully compliant with the HTML5 standard. It is also not

uncommon for different browsers to implement different HTML elements in different

ways, or to expect unusual syntax during interpretation of some code. This can

make developing HTML difficult, as the programmer must always be mindful of the

different browsers that his software will be run on and exactly what those browsers

support and how they support it.

23

CHAPTER 3. DESIGN AND SOFTWARE ENGINEERING

3.2.2 CSS

CSS (which stands for Cascading Style Sheet) is the most popular language for the

styling of HTML on the internet. The styling of an element is a catch-all term which

refers to all of the various attributes which the element has. It also refers to the

effects that those attributes have upon the look of the element. We can specify the

element’s height, width, font colour, font size, margins, borders, padding, background

colour, placement and much more.

When a browser receives a page of HTML, the HTML may request the browser to

also obtain CSS. The CSS can also be specified within the HTML page, in which case

it is not necessary to obtain CSS from a server separately. When a browser obtains

the CSS from a server, either from a CSS page or through the HTML, the browser

then parses the CSS and applies the styling to the HTML that has been rendered. In

a perfect situation the HTML is never perceived as being styled in any other manner

other than that specified by the CSS on the page. This allows a web developer to

more easily lay out his content and to style every element of the page. This allows the

web developer to make the page inviting and easy to use from a user’s perspective.

CSS has a lot of specific features which make it difficult to summarize. If you

wish to learn CSS, the best way to familiarize yourself with it is to lookup or read

some tutorials (a good source for this is w3schools [25]). It is not necessary to read

such tutorials for this thesis. In summary, CSS is used for styling an element’s colour,

border, font, margin, position, background, and much more.

In order to aid with the development of CSS and HTML, frameworks are often

utilized. A framework is a package of pre-written code which sets up some common

code snippets for use by the programmer. This allows the programmer to write

code more quickly and it reduces duplication of work. The frameworks used by

web developers set up a lot of the CSS ahead of time for the developer. They also

sometimes include a few custom HTML tags. During the development of Grapha, a

framework by the name of “Foundation” was used for these purposes. Developed by

Zurb, Foundation is free to use and helps in developing front end web pages [23].

It allows a programmer to create a user interface quickly and cleanly. To use the

framework, a developer must first set up a colour profile for his application. After that,

24

3.2. PROGRAMMING LANGUAGES

the developer is able to make use of the extensive library of Foundation styles which

are not only professional and clean looking, but also user-oriented and responsive.

Foundation helped with a lot of the user interface and styling details of Grapha.

It allowed development time to be focused upon programming, functionality, and

user goals. Instead of a lot of time being spent on styling and design details, a more

appropriate amount of time was spent on them, allowing development time to be

spent enhancing the software’s capabilities.

3.2.3 JavaScript

The first thing to understand is exactly what JavaScript is. However, the language

that we call JavaScript may not refer to a concise thing. Every company which

implements some version of what we call JavaScript is really implementing some-

thing different. What the companies are really doing is creating a language which

is compatible with ECMAScript (ECMA stands for European Computer Manufac-

turers Association), but may not be JavaScript. ECMAScript is the standard upon

which all other companies develop their ECMAScript-like (JavaScript) language [18].

ECMAScript’s standards tell the developers of any JavaScript-type language what to

implement and how to do so [13]. Every company names this language that they de-

veloped something different. For example, Firefox and Chrome use a language called

JavaScript, Internet Explorer uses JScript, and Opera simply uses ECMAScript. This

means that JavaScript is not really a single language which is developed by a single

entity. Instead, JavaScript is a term used to refer to a group of languages which are

all used for similar purposes and are based upon ECMAScript.

There is no single standard for exactly how to interpret or process JavaScript.

When a browser encounters JavaScript code on a web page, the browser hands the

JavaScript off to an appropriate engine which handles the code for the browser. One

problem with this is that almost every major browser uses a different JavaScript

engine to interpret and execute the commands of the language. These engines are

developed independently (except for their common compatibility with ECMAScript).

The various engines used by browsers may differ slightly on exactly which code they

25

CHAPTER 3. DESIGN AND SOFTWARE ENGINEERING

support and the functionality of various pieces of code. This means that while pro-

gramming JavaScript, sometimes the developer needs to consider where it is going to

be run. The programmer can then adapt to ensure that all relevant platforms run

the code in the same manner.

JavaScript is an event-oriented scripting language which is used primarily for

web development. Saying that JavaScript is event-oriented is similar to saying that

JavaScript is driven by events or occurrences. This means that JavaScript responds

primarily to user interaction or other events that occur (such as the completion of the

web page loading). The event-oriented paradigm also means that when JavaScript

updates the page or changes things in the browser it performs all of those changes at

once. This is usually performed at the end of each function.

Although it is described as being event-oriented, JavaScript is also object-oriented

and supports functional programming. It is not compiled, but rather interpreted by

another program. JavaScript, although having the word “Java” contained within its

name, is very different from Java. Similarities to Java include, but are not limited to,

naming conventions, object-oriented programming, and portability. JavaScript has

syntax which is heavily influenced by the programming language named “C”. This

thesis will focus on the usage of JavaScript in Grapha, where it is used alongside

HTML to create an interactive web page.

3.3 Cross-Platform Code

3.3.1 Language Choices

One of the goals of the Grapha software was that it would maximize portability. In

order to achieve this, Grapha must be able to be run on a maximum number of devices.

Furthermore, it was desired that Grapha would also run as a web page hosted on the

internet. Using this web page, devices which do not allow the user to install programs

would also be able to run Grapha quickly and without set up.

With both of these goals in mind the choice of programming languages to use was

obvious. HTML, JavaScript, and CSS are languages which work well together and

26

3.3. CROSS-PLATFORM CODE

can be run on any device which has a JavaScript-enabled browser. Also, as long as

all of the required code can be placed within one file, the user can access it via a web

page or save it and run it off-line. Since JavaScript-ready browsers are available on

Mac OS, iOS, Windows, Android, and Linux, creating a web page which runs solely

using JavaScript, CSS, and HTML allows a user to run that page everywhere that

he can have Chrome, Firefox, Safari, Android Browser, or even Internet Explorer

installed.

Despite Grapha’s portability, it cannot be run absolutely anywhere. Grapha uti-

lizes bleeding edge features of both HTML5 and JavaScript in order to allow its various

functions to run smoothly and seamlessly. Due to Grapha’s reliance on a web browser

the user must be running a current version of any web browser (this includes Internet

Explorer 9.0 and up, or any current version of Firefox (5.0.1 and up), or Chrome (9.0

and up)). This however, does not limit the usage of Grapha as long as the user is

willing to upgrade to an up-to-date browser. The most popular browsers are available

on any device for free. Many devices even come with one pre-installed.

In order for a user to run Grapha off-line on his own computer, he can simply

right click on the web page, and click Save as... or his operating system’s equiv-

alent function. It is valuable to note here that not every operating system has this

functionality. Doing this will create a local HTML page which can be run in any

browser of the user’s choice. This means that both the web version and the local

version of the page will run and behave identically. Consistency is valuable to users,

so that they do not have to re-learn a program the moment that they wish to use it

slightly differently. Grapha’s use of JavaScript, HTML, and CSS preserves the user’s

experience from one device to another therefore reducing the learning curve of the

software.

In order to obtain Grapha a user must either have access to the internet, or some

way to transfer the saved Grapha file onto his computer. Without either of these

things, the user would not be able to obtain the software.

27

CHAPTER 3. DESIGN AND SOFTWARE ENGINEERING

3.3.2 Saving and its Challenges

In conjunction with using three languages, Grapha has also been tested for compatibil-

ity across multiple browsers. Grapha will work on any up-to-date version of Chrome,

Firefox, or Safari and it will also work on Internet Explorer 9.0 and greater. In order

to achieve this, some of the JavaScript had to be sculpted to better fit all of those

browsers. The most notable difference was with the way in which browsers both save

and load items to their cache or to the computer.

In order to save or load graphs locally Grapha makes use of the object named

“localStorage” in JavaScript. The localStorage object is a way to save key-

value pairs into the browser’s cache for use later. You can save and load, to or

from these objects using the methods localStorage.setItem(key, value) and

localStorage.getItem(key). The keys and values used must be strings. This means

that any object which is to be saved into localStorage needs to be converted into

a string and needs to be parsable back into its original object form. In order to

do this JavaScript’s JSON (JavaScript Object Notation) object was used. JSON is

both an object and a concept in JavaScript. It is the concept that any JavaScript

object has a string representation which is easy to parse and it is an object which

has useful methods for the stringification and objectification of various objects and

strings. The methods used to do this are called as follows: “JSON.stringify()”,

and “JSON.parse()”.

Using these methods, Grapha is able to save an array of graphs into local stor-

age by stringifying them first using JSON.stringify(object). Then whenever the

user issues a request to load such a saved graph, Grapha uses the “JSON.parse()”

command to convert the string back into an object.

This does not run as smoothly as one might expect, though. As it turns out,

the JSON representation does not store the type of the object that was saved in

the string. As such any methods that the stringified object had may not be present

when an object is parsed. In order to fix this, Grapha has the following functions:

“makeSimpleGraph(toSimple)” and “makeComplexGraph(toComplex)” which take

parsed objects as parameters and return the corresponding complex graph and simple

graph equivalents.

28

3.3. CROSS-PLATFORM CODE

When Internet Explorer is run from a local computer, it does not allow a user to

save an item to the browser’s cache. This creates a problem where none of the user’s

individual graphs can be saved temporarily. Although cache saving is not an option,

temporary saving to RAM (as with all programming languages) is still an option.

To allow the user to have a similar experience though, a new way of temporarily

saving graphs had to be created. The solution was to check if the browser has the

localStorage object set up already, and if not then one needs to be created. The

core of the browser cannot by manipulated though. This means that in order to allow

saving in Grapha a temporary (volatile) object named “ieStorage” was created which

supports all of the same functionality as the localStorage object. The user can then

proceed to use all of the various functions of Grapha as he normally would; however,

if he closes the browser session he will lose his temporary graphs. Grapha also has

the ability to save graphs to a user’s file system; this means that Internet Explorer

users will have to save and load their graph library every time that they begin and

finish working.

This brings us to another one of Internet Explorer’s shortfalls. When a user wants

to save his graph library to his hard drive on any other browser the user only has to

click the save button. This uses the download attribute which is a feature of HTML5.

Internet Explorer does not yet support this feature so in order for a user to save his

library the user must open a GUI and type out a name manually, then click save.

To accommodate this, Grapha’s JavaScript code checks for when the user is using

Internet Explorer and changes the way that the application responds to a request to

save.

Another place where saving files is an issue is the area of mobile platforms. Some

mobile platforms do not expose the file system to the user. This can make it very

difficult for the user to save his graph libraries or load them. Furthermore, it will

also be difficult for the user to save his raster-based images to his file system. Many

of these downfalls of mobile devices cannot be overcome by Grapha and the device

users are left with a slightly less functional piece of software.

29

CHAPTER 3. DESIGN AND SOFTWARE ENGINEERING

3.4 Object-Oriented Code

During the development of Grapha, the need for having a modular program which

could be easily expanded became apparent. There is no way that a programmer could

identify all of the basic graphs which the end user would want to generate. There is

also no way that a programmer could identify or predict all of the necessary outputs

that the user base would want. This led to the realization that Grapha would need

to use easily created objects which represent graph types and outputs. This allows

future programmers to expand the functionality of Grapha to meet future needs.

Grapha was developed in multiple files which, for production, are combined into

one HTML file. One of the files (named GraphTypes.js) defines the different basic

graphs and graph types which the program generates. Adding an additional graph to

Grapha’s repertoire is as simple as adding a function which defines the new graph to

that file. The function simply initializes the graph and places it into the repertoire

array called “allGraphTypes”. Then, the function called initializeGraphs calls

the corresponding initialization function. In Figure 3.1 an example of such code is

shown. A similar technique is used for creating new output methods in the file named

“outputs.js”.

Further definition of all of the parameters to the new GraphType(...) object is

outlined in Section 3.5.1.

Creating new output methods is much more complex, however, because it is nec-

essary to define exactly how to render the graph to be output and, in the case of

vector-based image formats, how to output the generating code. Each output method

corresponds to a method with which the user will obtain his graph from Grapha. Out-

puts could be PNG, JPG, TikZ code, SVG code or others. Writing an output module

requires some knowledge of the inner workings of Grapha but it can be done indepen-

dently of the rest of the code, without modifying it. The programmer creating a new

output type will create an object in JavaScript named “Output” which takes a name

and a reference to a function which will generate that output. Then the programmer

adds that object to the array named “allOutputs”. This should be done in the

function named “initializeOutputs”. The complicated part of the output function

30

3.4. OBJECT-ORIENTED CODE

function initializeBipartite(allGraphTypes)

{

var biparConn = new Array();

biparConn[0] = new Array();

biparConn[1] = new Array();

biparConn[0][0] = "none";

biparConn[0][1] = "fullCompl";

biparConn[1][0] = "none";

biparConn[1][1] = "none";

var biparNam = new Array();

biparNam[0] = 1;

biparNam[1] = 2;

var biparNum = new Array();

biparNum[0] = 1;

biparNum[1] = 2;

var biparRes = new Array();

biparRes[0] = 0;

biparRes[1] = 0;

var biparRender = new Array();

biparRender[0] = "horizLine";

biparRender[1] = "horizLine";

var biparUser = new Array();

biparUser[0] = true;

biparUser[1] = true;

allGraphTypes[allGraphTypes.length] = new

GraphType("Bipartite", true, false, 2, biparConn, biparNam,

biparUser, biparNum, biparRes, biparRender, undefined,

undefined, undefined, undefined, undefined, undefined,

undefined, undefined, undefined, undefined, undefined,

undefined, undefined);

}

Figure 3.1: The code for initializing the bipartite graph type

is exactly how the generate function generates output and gives it to the user. These

things will take an experienced JavaScript programmer some time to figure out, but

by examining the current output functions the programmer will begin to understand

how to implement his own.

31

CHAPTER 3. DESIGN AND SOFTWARE ENGINEERING

3.5 Graph-Related Objects

3.5.1 The GraphType Object

A graph type (or a basic graph) is the framework for how to generate a graph. This is

represented in Grapha as an object named “GraphType”, which holds all of the rules

for generating a graph of that type. Some examples of graph types are bipartite,

wheel, and star. A graph type is defined as a type or family of basic graphs for the

purpose of this thesis.

During the development of Grapha it was decided that the type of a graph would

be the basis for which to begin creating the graph. The graph type has information

on how to render the graph, how the vertices connect to each other, and how the

vertices are divided into partitions.

var thisNewGraphType = new GraphType(name, complToggle, isSquare,

numOfSections, secConnSec, secNamingGroup, userSecPerNam,

secNumOrder, secNodeReserve, secRenderType, getNameP,

getComplToggleP, getIsSquareP, getNumOfSectionsP, getSecConnSecP,

getSecNamingGroupP, getUserSecPerNamP, getUserSecPerNamAtP,

getSecNumOrderP, getSecNodeReserveP, getSecRenderTypeP,

getSecConnSecAtP, getSecNamingGroupAtP, getSecNumOrderAtP,

getSecNodeReserveAtP, getSecRenderTypeAtP);

Figure 3.2: The parameters necessary to initialize a graph type object

In order to hold the definition of a graph, a graph object was designed to have a

fixed number of variables which cover all of the properties of a graph type. A list of

the variables can be found in Figure 3.2. It is valuable to note here that in a graph

type object, vertices which are rendered similarly and connect similarly belong to

32

3.5. GRAPH-RELATED OBJECTS

a section or partition. For example, the wheel graph has two sections. One section

corresponds to the vertex at the center of the graph while the other corresponds to the

vertices which surround it. These are two separate sections because one set of vertices

is rendered as a single center vertex while the other set of vertices are rendered in a

circle. In addition, the center vertex connects to each outside one, while the outer

vertices connect to each other (in addition to connecting to the center vertex). The

fact that these sets of vertices are rendered differently and connect to each other

differently means that they belong to different sections within a graph type object.

A section in a graph type has a number which uniquely identifies it (0, 1, 2, . . .).

The full initialization call for a new graph type object is shown in Figure 3.2. The

letter “P” in that figure’s variables stands for pointer.

When Grapha wishes to know information about a section, (how it should be

rendered, how it connects to other sections, etc.) it looks up that section using its

number. All information concerning a given section can be found at its identification

number in a given array. For a one-dimensional array which refers to sections, the

software can look up how a section behaves by looking at the index which corresponds

to the section number. For example: if a programmer wants to look up how a section

numbered x is to be rendered, he would look up the array named “secRenderType”

at index x (secRenderType[x]). For a two dimensional array which relates sections

to each other, lookup happens in a very similar manner. How sections relate to each

other is found by looking at the numbered indices which correspond to the arrays

that are to be looked up. For example, if you wanted to see how section 0 connected

to section 2 you would look up the two dimensional array named “secConnSec” at

indices 0 and 2 (the code would be secConnSec[0][2]).

Following is a list important attributes which the GraphType object has. A

description of each attribute is following each attribute name.

name: A string which represents the name of the basic graph which is displayed

to the user. This is also used as a primary key for graph types, so all graph types

must have unique names.

complToggle: A Boolean which represents whether the graph can be toggled as

complete or not.

33

CHAPTER 3. DESIGN AND SOFTWARE ENGINEERING

isSquare: A Boolean which represents whether the graph’s rendered dimensions

are square or not.

numOfSections: An integer which represents the number of sections or partitions

of vertices that the graph type contains.

secConnSec: A two dimensional array of integers which represents how sections

of the graph type connect together. It is this array which specifies which edges are

to be generated and which two vertices they connect. Example: secConnSec[0][0]

= "none"; secConnSec[0][1] = "full";. The two examples just mentioned refer

to two facts respectively: first, that the vertices in section 0 do not connect to other

vertices in section 0 and second, that every vertex in section 0 connects to every

vertex in section 1.

secNamingGroup: An array of integers which defines which sections are in the

same naming group by assigning each naming group to a number and then giving

sections in the same naming group the same number. A naming group is a group of

vertices which share the same label (such as v1, v2, etc.). Example: if there are four

sections, and the first and last sections have the same naming group and middle two

have the same naming group the array will be: secNamingGroup = {1, 2, 2, 1}.

userSecPerNam: An array of Booleans which defines whether the user has the

ability to edit the quantity of vertices which are contained within a naming section.

If not, then the reserved number of vertices is used. This number is held in the

secNodeReserve array described below.

secNumOrder: An array of integers which defines the order of vertex numbering

for items which are in the same naming group. This is specified by the numerical

order held in this array. For example, if there are three sections in a graph type and

the first two are in the same naming group (specified by the fact that both have the

same number contained in the secNamingGroup array and the third section having a

different number), this array could be: secNumOrder = {1, 2, 1}, indicating that

the first section obtains lower numbers and the second section obtains higher numbers

in the first naming group. The numbers referred to here are the vertex numbers which

are part of the vertex label.

34

3.5. GRAPH-RELATED OBJECTS

secNodeReserve: An array of integers which defines how many vertices are

automatically reserved from the user’s amount in a naming group for a section. This

is because the user cannot specify multiple amounts in the same naming group so

sections of fixed size are specified here. An example would be a wheel graph: there

are two sections of vertices, the first section is the vertex which lies in the middle

of the graph and the other section refers to the vertices which surround the middle.

In this case, we assign both to the same naming group and allow the user to define

the graph with a single number. This means that the first section will have 1 node

reserved which is subtracted from the user’s entered amount to be used as the middle

vertex. In the case of a wheel graph, this array would then look like: secNodeReserve

= {1, 0}.

secRenderType: An array of strings which defines how to render a section. Cur-

rently implemented types are: “horizLine”, “verticLine”, “roundOutside”, and

“center”. They render a section’s vertices in, respectively, a horizontal line, a ver-

tical line, a circle which is outside of any previous circles, or a center vertex. If a

programmer wishes to expand this list, it can be done.

With all of the attributes specified above it should be possible to create most

imaginable graph types, so long as that type of graph follows rules and does not have a

random or haphazard way of being rendered or generated. In order for a programmer

to create a new graph type to add to Grapha’s repertoire, the programmer should

initialize all of the variables in a GraphType object inside of the initialization function

for that graph type. These attributes give the programmer the ability to tell Grapha

exactly how to generate the graph, what it looks like, and what the user’s options are

when creating the graph.

These variables, however, are limited in the options that they give for making a

graph type. The set, static variables constrict the graph, making it rigid and inflexible.

For example, if a graph type object should be rendered differently based upon the

number of vertices contained within each section, then the programmer will not be

able to accomplish it with these variables alone. Grapha supports another feature

which makes this kind of dynamic graph type available as well. Any programmer

35

CHAPTER 3. DESIGN AND SOFTWARE ENGINEERING

who creates a new graph type object will be able to redefine all of its functions,

including the values that those functions return.

The initialization of a graph object takes pointers to functions. For example,

a graph type has functions: getSecConnSec and getSecConnSecAt(index) which

return the secConnSec array, and an element from the secConnSec array respectively.

At object initialization, when a programmer passes a function pointer to the graph

type initialization function, Grapha over-writes that function with the programmer’s

new function. Then when the proper function is called to access one of the graph type

object’s variables, the programmer’s new code is run instead. This functionality could

allow a call to getSecRenderTypeAt(2) to (instead of just returning the initialized

value of secRenderType[2]) check to see how many vertices are in section 2 and

return a different string representing how to render the section based upon that

number. This function over-write capability allows Grapha’s graph type objects to

be extremely flexible and customizable. Using the function defined in Figure 3.2, a

programmer can easily add to the repertoire of Grapha and expand the basic graph

line-up.

3.5.2 The SimpleGraph Object

A SimpleGraph object refers to a single user-generated instance of a GraphType ob-

ject. It is the basis upon which all graphs are based. The SimpleGraph object stores

the user’s values that he wishes to impose upon his chosen graph type and holds those

values for generation and rendering. The initialization function for a SimpleGraph

object has the following prototype:

var thisNewSimpleGraph = new SimpleGraph(name,

type, vertLabel, complete, sectionAmounts,

sectionNames, sectionNumbers, scale,

textSize, xRes, yRes, weights, weightPos,

rotate);

A SimpleGraph has a name, which must be unique. If the user attempts to save a

SimpleGraph whose name is equal to the name of another saved SimpleGraph then

36

3.5. GRAPH-RELATED OBJECTS

he is prompted to specify a different name. The object also has a type, which is a

reference to a GraphType object. The rest of the variables all correspond to user-

entered values. Examples are: vertLabel, which is true if the user wants the vertices

to be labelled and false if the user did not want them to be labelled; complete, which

is true if the graph is complete and false if it is not; sectionAmounts, which holds an

array of the number of vertices in each section naming group; rotate, which holds

the rotation (in degrees) around its center; and xRes, which holds the resolution in

the x direction for the graph when rendered as a raster-based image.

Most of the parameters are very straightforward and self explanatory, the scale

parameter refers to the node scale size while the textSize parameter refers to the

text size (in points). The more interesting objects are weights and weightPos, which

each hold an array whose values correspond to each edge. For every weight and weight

position there is an edge to which they correspond. This is covered in more detail in

Section 4.1.2.

The purpose of the SimpleGraph object is to simply hold the values that the user

has entered. It allows quick creation of graphs for the user and it supplies Grapha

with an object template which is used to save, load and delete graphs in the cache

and on the user’s hard drive. This is covered more in Section 4.1.2.

3.5.3 The ComplexGraph Object

A ComplexGraph object refers to a combination of one or more SimpleGraph or other

ComplexGraph objects which have been generated by the user. ComplexGraphs are

objects which have been generated by the user by combining multiple SimpleGraph

objects. SimpleGraph objects are combined in some way (for example: via their

vertices or via an edge) and are layered one next to the other. The initialization

function for a ComplexGraph has the following format:

var thisNewComplexGraph = new ComplexGraph(name, graphs,

graphFrom, graphTo, graphFromSec, graphToSec,

graphConnHow, graphFromSecAt, graphToSecAt, graphDominate,

graphRotate, horizFlip, vertFlip);

37

CHAPTER 3. DESIGN AND SOFTWARE ENGINEERING

A ComplexGraph object has a name, which must be unique. It also holds all of the

graphs which are used in the generation and rendering of the complex graph. The vari-

ables graphFrom, graphTo, graphFromSec, graphToSec, graphConnHow,

graphFromSecAt, graphToSecAt, graphDominate, and graphRotate are all arrays

whose indices correspond to a relationship between any two graphs in the complex

graph. For example, all of the arrays except for the graphs array describe a connec-

tion relationship between two graphs. The first item in the graphs array is simply

placed on the graph, then all of the other items are connected to it, or to items

connected to it. This is done using the items in the above mentioned arrays.

The connection arrays in a ComplexGraph object tell of a connection at each of

their indices. At array index 0 they will describe a relationship between the graphs

in graphFrom[0] and in graphTo[0].

The variables graphFrom and graphTo designate which graphs in the array graphs

are to be combined, while graphFromSec, graphToSec, graphFromSecAt, and

graphToSecAt are all used to specify the place at each graph that is to be the com-

bining point (if any). The graphFromSec and graphToSec arrays both hold the

section number of each graph that they are to be identified with, while the arrays

graphFromSecAt and graphToSecAt are used to specify the vertex number in the

section at which the graphs are to be combined.

A connection between two graphs in the complex graph also has three more at-

tributes: graphConnHow, graphDominate, and graphRotate. The variable

graphConnHow contains a string which holds the way in which the graphs are to be

combined. This variable was included for future proofing the software and to allow

different connection types. It will allow future programmers to enable graphs to be

connected at more than just vertices. Right now there are two ways in which graphs

can connect with each other. The first is via the string “none” which tells Grapha

that the two graphs are not attached in any way; instead the graphs should simply

be rendered side by side. The second way that graphs can be attached is identified

by the string “is” which tells Grapha that the identified vertex on one graph is the

identified vertex on the other one.

38

3.5. GRAPH-RELATED OBJECTS

The graphDominate variable tells Grapha which graph is to keep its identified

vertex’s name and size and which graph’s vertex’s name and size are to be overridden

by the other’s. Vertices which are not dominant are not rendered. The final attribute

of a connection between two graphs is the array named “graphRotate”, which defines

how the new graph should be rotated. This variable specifies how the new graph

should be rotated around the combined point, if possible.

There are two special attributes here which are not arrays; they indicate whether

or not the compound graph object should be flipped horizontally or vertically;

horizFlip and vertFlip. These attributes act upon the entire compound graph

and change the method in which it is rendered.

With all of these variables Grapha has the ability to combine large numbers of

graphs as per the user’s requests. The graphs can be forced together in various

ways, then rotated. Graphs can then “pile up” upon each other, which preserves the

rotation and the structure of each graph. For more information on the rendering of

graphs see Section 4.2 and Section 4.3.

39

CHAPTER 3. DESIGN AND SOFTWARE ENGINEERING

40

Chapter 4

Implementation and Software

Explanation

4.1 Manipulating Graphs

In this chapter, the way in which Grapha manipulates graphs will be fully explored.

Graph rotation, graph combination, graph outputting, and the ways in which Grapha

handles graphs will all be discussed within this chapter.

4.1.1 How Objects Are Used, Saved, and Loaded

Within Grapha there are a number of different global arrays which hold all of the

initialized objects. There is one named “allGraphTypes” which holds all of the dif-

ferent GraphType objects which have been initialized. One global variable is named

“allOutputs” and it holds all of the different Output objects which have been ini-

tialized. Another is named “allWeightPositions” and it holds the five different

weight positions that are available to the user. Finally, there is a variable named

“allScaleTypes” which is global and holds all of the different GraphScaleType ob-

jects.

These global arrays are used during the launch of Grapha to dynamically change

the user interface. This means that every time a programmer needs to add a new

41

CHAPTER 4. IMPLEMENTATION AND SOFTWARE EXPLANATION

output type or graph type to Grapha he does not need to edit any other code, except

to add that initialized object to Grapha’s global arrays. In addition, whenever one

of these objects is required by Grapha, the software can look up the details of it

within that array. This allows Grapha to be modular on a programming level. A

lot of the details of implementation can be difficult to understand or can take a long

time to fully learn. The modularity of Grapha can ease a programmer’s burden by

simply providing an object to be created. Then, once created and placed in its proper

location, the programmer need not worry about the other details involved in using

that object.

Another variable which Grapha uses often is the localStorage variable. This vari-

able is what gives Grapha access to the browser’s cache for storing graphs. Grapha sim-

ply calls localStorage.setItem(key, value) or localStorage.getValue(key)

and the value which is identified by that key is stored or loaded from the browser’s

cache, respectively. Grapha stores one key-value pair, which has the key “userGraphs”.

This key stores a JSON (JavaScript Object Notation) representation of an array of

all graphs in the user’s cache. When Grapha needs to access this array, it simply

calls localStorage.getValue("userGraphs") and then turns that string back into

an array using the JSON JavaScript object, as described in Section 3.3.2.

Grapha can then use this array of graphs to populate the load and delete drop-

down menus in the user interface, or recall all of the properties of a graph to render

or output it. When a graph is to be saved back into this array Grapha performs a

few tasks. First Grapha must check to see if this name is already used. If so, then the

software prompts the user to see whether or not he would like to replace the current

graph stored under that name. After doing this, Grapha either stores the new graph

into the browser’s cache (depending on the user’s response), deletes the old graph

and replaces it with the new one, or simply does nothing.

Saving and loading the array of graphs to and from a file is very similar to saving

and loading the array to and from cache. In order to save an array of graphs (a library

of user-created graphs) to a file, Grapha first prepares the array as JSON. Following

that, Grapha converts that string into a base-64 encoded ASCII string. Then using the

new HTML5 download capability, the download attribute of the “Save All Graphs

42

4.1. MANIPULATING GRAPHS

As A File” button element is set to the user-entered file name and the href (or

link) attribute is set to the base-64 encoded ASCII string prepended with the text

data:application/octet-stream;charset=utf-8;base64.

Once these things have been accomplished, the user simply has to click on the

“Save All Graphs As A File” button and the browser recognizes that the file at

the href address (the link, or in this case the file encoded directly into the link

address) is to be downloaded. The browser can make this connection due to the fact

that the download attribute of the clicked element is populated with the name of a

file. Grapha then sends the file at the href specified location to the user’s computer

under the name which is specified with the download attribute.

4.1.2 Creating, Saving, and Editing a Basic Graph

A user’s first task when launching Grapha for the first time will be to pick a graph

type to be the framework for his first graph. This graph type, when selected, is

searched for in the allGraphTypes array. Once the graph type (whose name matches

the drop-down menu element that the user clicked on) is found, Grapha accesses the

attributes of the graph type and determines which options the user needs. Once

Grapha has determined this, it then updates (changes the HTML) the user interface

to reflect these options.

To perform these user interface updates Grapha must check if the graph is square

or not, using the graphType object’s getIsSquare function. If it is not square then

the user needs to have access to both width and height; if it is, then a single text

box for both dimensions will do. Grapha must also check if the user can toggle the

complete state of the graph, as received from the getCompToggle function of the

graph type object. This determines whether the user will see the “Complete?” check

box in the user interface. Recall that a graph being complete refers to the idea that

all possible edges are drawn for that graph.

In addition, Grapha must also give the user options for the number of vertices in

each section and the label and starting number of each section. The latter option

is a little bit more difficult to do then the former two options. First of all, two or

43

CHAPTER 4. IMPLEMENTATION AND SOFTWARE EXPLANATION

more sections can be combined internally. In this case only one is displayed to the

user (thus two sections are in the same naming group, like a wheel graph discussed

in Section 3.5.1). Second, perhaps a section is unavailable for user editing, such as in

the Petersen graph where the user cannot change the number of vertices.

The issue of user input will be further explored in Section 4.2.2. For now, Grapha

takes each user input number of vertices as well as every label and label number

which the user has typed and attributes them each to a naming group. Thus Grapha

simply stores the user variables into the arrays sectionAmounts, sectionNames, and

sectionNumbers.

To set up the user interface properly, Grapha must pay close attention to the

graph type object for which it is giving the user options. To place the proper number

of naming groups on the user interface Grapha checks each section of the graph type

(recall that a section refers to a group of vertices which share similar properties).

When Grapha encounters a section which is part of a naming group that it has

not encountered yet, Grapha adds a new section for vertices and naming. However,

there is one catch: the programmer might not have wanted the user to be able

to edit the number of vertices in that section. Grapha must then use the graph

type’s function getUserSecPerNamAt to obtain information on whether or not the

user should receive control over the vertices of that section. After eliminating these

sections, each remaining user interface text box corresponds to a unique naming group

in the graph type.

When the user submits a request to create a graph, Grapha simply initializes

the basic graph by placing the values from the user interface into the SimpleGraph

object’s initialization function. The graph is then stored in a global variable which

holds the user’s current basic graph. This global variable is the variable which is

used to populate the HTML (or graphical user interface portion of Grapha) with the

proper values. It is also the object to which future updates are pushed.

In order to allow the user to update a graph, Grapha has event listeners which

listen for clicks (both mouse up and mouse down) and key presses. Once an event

has occurred, Grapha’s JavaScript then executes the function which corresponds to

that given request. For example, when a user wishes to change the node size of a

44

4.1. MANIPULATING GRAPHS

graph, the user will click on the corresponding node size that he wants in the drop

down menu. Grapha (which has been waiting patiently for this event to happen) then

reads in the name of the clicked node size. The software then sorts through the array

named “allScaleTypes” (which holds all of the different scale types) and finds the

one which corresponds to exactly what the user clicked. This value is then written to

the basic graph object.

Edge weights and their positions are another user-editable part of the basic graph.

When Grapha generates a list of edges from a graph object, it then pairs each edge

with corresponding entries in two arrays which are part of the SimpleGraph object

(described in Section 3.5.2). The first array, weights, holds all of the weights that a

basic graph’s edges has. The second array, weightPos, holds all of the positions of

each weight for each edge. When the edges are generated, each weight and weight

position is simply placed onto the edge object. How edge objects are generated is

explored in Section 4.2.

When a user edits a weight, the array which corresponds to the edit (or both of

the arrays) is edited. This is done in the same manner as any other attribute edit.

The global object is then updated and the graph is re-rendered.

Once Grapha has identified the new values to be used in the graph, the global

graph object (which represents the user’s current graph that he is editing) is then

changed. After this change has occurred, Grapha renders the graph and displays it

to the user (further information on rendering graphs is located in Section 4.3). When

the user requests to save the graph, this global graph object is then pushed into the

userGraphs array located in cache.

When a user requests to load a graph, via the tab named “Edit Basic Graphs”,

Grapha pulls all of the user-created graphs from cache. Upon doing this Grapha then

fills out the appropriate drop down menu and adds event listeners to each item in the

drop down menu. Once these listeners are in place the software will respond to a click

on one of the graph names in the menu. Grapha then takes the name of the element

which the user clicked on and searches through the cached graphs for one with the

same name. Once this has been found the user interface is updated to reflect that

graph and its options. In addition the graph is rendered and shown to the user.

45

CHAPTER 4. IMPLEMENTATION AND SOFTWARE EXPLANATION

In this manner Grapha listens and administers user requests to load, save, and

change basic graphs.

4.1.3 Combining and Editing Compound Graphs

Within Grapha there is the ability to combine basic graphs into compound graphs.

This utilizes the ComplexGraph object. The ComplexGraph object (as described in

Section 3.5.3) contains all of the necessary attributes for defining multiple graphs

which have been combined into one. A compound graph is composed only of basic

graphs; the ComplexGraph object has very few attributes which change the entire

compound graph. Thus compound graphs in Grapha do not store information about

the graph as a whole, instead the complex graph simply stores basic graphs as well

as the ways in which those graphs connect to each other.

The basic graphs which are stored in the compound graph are copies of their

originals. This means that if the user decides to edit a basic graph while it is within

a compound graph, then the saved basic graph will not be changed. In addition,

when the user edits a saved basic graph which is a part of a compound graph, the

compound graph will not change. Grapha stores no link that would connect saved

basic graphs to saved compound graphs.

When the user decides to combine two different graphs, Grapha must decide ex-

actly what the user meant by requesting that combination. First, if the user has

clicked upon a vertex from each graph then the software knows to combine the graph

by identifying those two points. Second, if the user has omitted clicking on a vertex

from one (or both) of his graphs that he wishes to combine, then Grapha assumes that

the graphs are to be placed next to each other and no vertices are to be combined or

identified with each other.

If the user requested that the graphs are to be connected to each other Grapha

needs to combine them. If the graphs are both basic graphs then this is a relatively

easy task. Grapha must initialize a new ComplexGraph object which has two graphs

in its graphs array. Then Grapha fills in the other arrays of the ComplexGraph object

in line with the connection point between the two graphs. Once the arrays have been

46

4.1. MANIPULATING GRAPHS

filled in (as described in Section 3.5.3), the complex graph is stored in a global object

(just as simple graphs are) for editing or saving by the user.

When the user requests that a compound graph be combined with a basic graph

Grapha deals with the request in a similar manner. In this case Grapha makes the

compound graph the base for the rest of the graph. Then Grapha simply adds to

each array another connection between two graphs. More specifically, another graph

is added to the graphs array, one more section and vertex number is added to each of

the identifying arrays. Then the graphFrom and graphTo arrays each have a number

added to them to specify the graphs to be connected.

As can be seen so far, when a user creates a graph Grapha does a minimal amount

of work to save all of the rules and attributes of that graph. The details of how the

graph is rendered or generated is hidden at this point. Grapha has other functions

which take a graph and create a list of nodes or edges. Following that, Grapha then

uses functions which take a list of nodes or edges along with the graph as parameters.

These functions then render the graph or create output for it.

The situation becomes a little more difficult when a user requests that two com-

pound graphs be combined into one graph. The problem with this is that before

now, we were simply inserting a new connection into the arrays. It is not as simple

to do this time. Now it is necessary to determine the primary graph and secondary

compound graphs.

When Grapha receives the request to combine two ComplexGraph objects it picks

one of the ComplexGraph objects and considers this the base (primary) ComplexGraph.

Once a primary graph has been arbitrarily chosen it becomes the ComplexGraph

which is added upon to create the new compound graph. After setting a primary

compound graph, Grapha then begins adding basic graphs and connections from

the other (secondary) ComplexGraph object to the primary graph one by one. This

occurs until they have all been added and all the basic graphs reside within one

ComplexGraph object. This has to be done in a particular order due to the fact that

basic graphs must be in the graphs array in the order of their connection for the new

graph to be able to be rendered. For example, if graph four attaches to graph two,

we cannot add graph four to the new compound graph before graph two or else graph

47

CHAPTER 4. IMPLEMENTATION AND SOFTWARE EXPLANATION

four will not have any way to attach itself. Therefore only graphs which connect to

a previously added graph may be added at any point.

In any case, once all of the basic graphs have been combined into one ComplexGraph,

Grapha then stores the graph into a global variable for manipulation or saving by the

user. This is done similarly to how it was done for basic graphs.

Manipulating a compound graph is also very similar to that of basic graphs. When

the user clicks on a basic graph (which is a part of a compound graph) in the “Edit

Combined Graphs” panel the user can then edit that basic graph. When this occurs

Grapha simply updates that graph in the graphs array of the ComplexGraph object.

The other edits that a user can perform when he is editing a compound graph are:

toggle vertex labelling for all basic graphs contained within, vertically flip the entire

graph, horizontally flip the entire graph, auto number the entire graph, or change all

of the text and node sizes of all the basic graphs at once. Toggling the labelling of the

basic graphs causes Grapha to run through all of the graphs in the ComplexObject’s

graphs array and make the vertLabel variable of each one true or false. A similar

solution is performed by the software when the user requests that all node sizes be

changed at once, except this time the variable of each basic graph called “scale” is

changed to the desired value. When a user wants the compound graph to be vertically

flipped or horizontally flipped, the flag contained within the ComplexGraph object is

simply set to true or false. When the user requests the graph to be auto numbered,

the basic graphs which have been stored into the compound graph’s graphs array

are changed so that no numbers overlap and no numbers are skipped. All of these

user requests come from the user interface. After the user interface element has been

interacted with Grapha sets the flags appropriately.

All of these edits to any compound graph are saved in that compound graph’s

properties. They travel with the graph, even if it is saved into cache or saved to the

hard drive (or another user storage device) as a library. These properties are then

transferred when two graphs are combined, allowing a user to customize his compound

graph and then combine it with another different compound graph. Users can chose

to save or output their compound graph at any time that they deem appropriate.

48

4.2. GENERATING LISTS OF NODES AND EDGES

4.2 Generating Lists of Nodes and Edges

Up to this point this thesis has covered some very important pieces of the Grapha

graph-generating software. The muscle of Grapha, however, is the way in which

it generates lists of nodes and edges. None of Grapha’s useful functions can be

accomplished without first transforming each graph that the software knows about

into a list of nodes and a list of edges. The software’s render, preview, and output

methods all require lists of nodes and edges to work. This section will focus on the

details of generating such lists.

4.2.1 The Node and Path objects

In order to produce any useful output or feedback on the graphs that the user has

created, the ability to generate lists of nodes and edges must be available. To begin

discussing this, the idea of a node and an edge will be explored.

A Node object contains ten attributes: fromGraph, sectionNum, vertInSecNum,

vertNum, name, number, placement, scale, textSize, and visible. The purpose of

each attribute is described below.

fromGraph: A reference to the basic graph (a SimpleGraph object) which this

node is a part of.

sectionNum: An integer which represents the section number that this node is a

part of. It specifies which section of vertices this vertex is from on the graph that it

is a part of.

vertInSecNum: An integer which represents this vertex’s number in its section.

This variable also corresponds to the order (within a section) in which this vertex

was generated. For example the first vertex in a section is 0, the second is 1, etc.

vertNum: An integer which is the number of this vertex with respect to all other

vertices within the same graph. For example the first vertex generated for a graph is

number 0, the second is number 1, etc. This number also corresponds to the order in

which vertices are generated (i.e. created from the graph object in the software).

name: A string which is the label name of this vertex.

number: An integer which is the displayed number of this vertex.

49

CHAPTER 4. IMPLEMENTATION AND SOFTWARE EXPLANATION

placement: A reference to either a Coordinate or a CoordinateAngle object

which details the place to put the node in the graph. These two objects are described

below.

scale: A number which is the scale that the node is to be drawn at.

textSize: An integer which specifies the size of the text (in points) for this node.

visible: A Boolean which, if set to false, specifies that the node will not be

rendered, however any edges attached to it will still be rendered. This is used for

identifying vertices, to keep both of them and their labels from appearing.

A sample initialization of a Node object follows:

var aNode = new Node(fromGraph, sectionNum, vertInSecNum, vertNum,

name, number, placement, scale, textSize, visible)

The CoordinateAngle and Coordinate objects are detailed below.

CoordinateAngle has five attributes: x, y, angle, rad, relTo. The Coordinate

object also has five attributes: x, y, xRel, yRel, relTo.

In both cases:

x: A number which represents the x coordinate at which the center node should

be drawn.

y: A number which represents the y coordinate at which the center node should

be drawn.

relTo: A reference to the node to which this node is to be positioned relative to

(this applies to the relX and relY or angle and rad variables and is currently only

used for TikZ code). If this is undefined then the node is to be rendered relative to

(0,0).

For a CoordinateAngle:

angle: A number which is the angle at which the node is to be rendered.

rad: A number which is the radius at which the node will be rendered from the

center of rotation.

For a Coordinate:

xRel: A number which is the relative x position of this node compared to relTo

node.

50

4.2. GENERATING LISTS OF NODES AND EDGES

yRel: A number which is the relative y position of this node compared to the

relTo node.

The Path object (which represents an edge) holds four attributes. These are

defined below.

node1: A reference to one of the nodes that this edge connects.

node2: A reference to the second of the nodes that this edge connects.

weight: A string, which is the weight to be rendered with this edge.

weightPos: A string which details where the weight is to be drawn relative to the

center of the edge.

These objects, once all generated, can be used to output graphs to any format as

seen in Section 4.3.

4.2.2 Lists of Nodes from Basic Graphs

When a request is made for Grapha to generate an output or render the graph to a

canvas in the user interface, Grapha must first generate a list of nodes and a list of

edges. In order to do this Grapha must first parse the basic graph object that it has

into arrays which are more directly usable.

One slight problem here arises from the user interaction. In the case of a wheel

graph the user only inputs the number of vertices for one section. Grapha simply

stored this value into the SimpleGraph object’s sectionAmounts array as it was.

When Grapha needs to generate lists from a graph it must then process this array to

fill out the number of vertices in both of the graph’s sections. This is done by iterating

through all of the sections contained within that naming group and subtracting the

number of vertices reserved for that section from the user-entered amount. Any left

over vertices are allotted to the section in the naming group which can take any

number of vertices.

Grapha accomplishes this via the graph type’s getNodeReserveAt function which

returns how many nodes that a section needs to have reserved. For example, in a

wheel graph the center vertex is one section (since it is rendered differently than the

other vertices) and the circle of surrounding vertices makes up another section. The

51

CHAPTER 4. IMPLEMENTATION AND SOFTWARE EXPLANATION

section containing the middle vertex needs one reserved node out of the user-allotted

amount. This means that, out of the number of vertices entered by the user, one will

be used for the center vertex, and the remaining will be used on the outside ring of

vertices. Grapha then assigns these vertex totals to each section in the graph. These

values are then used during the rest of the node-generating process.

Once this has been determined, the placement values (coordinates) for all of the

nodes are then generated. They are generated differently based upon the way in

which the particular section is to be rendered. To determine how a section should

be rendered Grapha retrieves the graph’s type attribute which contains a GraphType

object. This object’s secRenderTypeAt array is then retrieved and, depending upon

the string contained within, Grapha performs a different style of set up for the coor-

dinates.

For illustration here I will go over the details of two different render methods: hor-

izontal lines, and circles. If a particular section is to be generated as a horizontal line,

as in the bipartite graph or the path graph, the string retrieved will be “horizLine”,

if it is to be generated as a circle the string retrieved will be “roundOutside”. The

coordinates generated from these render types are then placed into a node object

along with the node’s other properties (which are trivial to generate). Most of them

are simple lookups into the arrays of the SimpleGraph object or are clear insertions

based on which number the vertex is in order of generation.

When Grapha retrieves the string “horizLine” Grapha then determines two dif-

ferent things. The first is exactly how much space it has to work with. This can be

accessed from the graph’s xRes and yRes attributes. The second is: how many other

“horizLine” sections does this graph have? For each “horizLine” section the graph

should be divided vertically into one additional part. Thus for one “horizLine” sec-

tion the graph will consist of two parts divided by that one horizontal line. If there

are two “horizLine” sections then the graph will consist of three parts divided by

the two horizontal lines.

Grapha uses the total space to find the y coordinates of these lines. Grapha then

splits the total x width of the graph by the number of nodes which are to be generated

in that line. This is done in a similar method to that of determining vertical space.

52

4.2. GENERATING LISTS OF NODES AND EDGES

One difference is that each side of a horizontal line starts near the edge of the graph,

while the horizontal lines themselves sit vertically at evenly spaced points in the final

graph. One exception to this is that if the horizontal line only contains one or two

nodes the nodes are placed with even spacing on all sides of them instead of being

pushed to the edge. See Figure 4.1 for an illustration of this. This rendering method,

combined with the exceptions for lines with few vertices, cause the rendered nodes

to have a pleasing look. The placement algorithms keep the nodes looking neat,

professional, and symmetrical.

v0 v1

v2 v3 v4 v5 v6

Figure 4.1: Two node and five node horizontal lines

As a second example, when Grapha reads the string “roundOutside” Grapha

then determines two different things. The first is exactly how much space it has to

work with. This can be accessed from the graph’s xRes and yRes attributes. The

second is: how many other “roundOutside” sections does this graph have? For each

“roundOutside” section the graph should be divided into evenly spaced parts by

radius. Thus if a graph only has one “roundOutside” section, the graph will consist

of two empty spaces (in terms of radius from the middle) split by that one circle

of nodes. If there are two “roundOutside” sections in a graph then the graph will

consist of three empty spaces (by radius) which are divided by two circles of nodes.

In this manner there are three sections of white space divided by two circles of nodes.

Grapha uses the total space to find the radius of these circles of nodes. Grapha

then splits the total circumference of the circle by the number of nodes which are

to be generated. This will make the space between each node on the circle equal.

See Figure 4.2 for an illustration of this. This rendering method gives a pleasing

look to the final layout of the nodes. It keeps them looking neat, professional, and

symmetrical.

53

CHAPTER 4. IMPLEMENTATION AND SOFTWARE EXPLANATION

v0

v1

v2v3

v4

Figure 4.2: Five nodes generated with the string “roundOutside”

After any nodes are generated using this method, the nodes are then rotated

around their center by the rotation amount stored in the SimpleGraph object. This

places all of the nodes in their final position which is where they will be rendered. For

the sake of making pictures smaller, any excess white space surrounding the graph is

also trimmed off before the user sees the nodes and before the user outputs the graph.

This could translate all of the nodes to the left, or upward but the nodes will end

up in the same space on the graph relative to all other nodes. Sometimes this can

make the graph a bit smaller than the user’s desired dimensions, but the difference

is negligible (unless only a few nodes are used) and does not affect the look of the

graph.

4.2.3 Lists of Nodes from Compound Graphs

For compound graphs, nodes are generated using a very similar method as that used

for basic graphs. In fact, the compound graph node generator uses the basic graph

node generator once for every basic graph contained within the compound graph.

This means that for each basic graph, there is a list of nodes generated. Then after

these lists of nodes have been generated, the nodes are changed slightly to better suit

their use in a compound graph.

The first change is that some nodes should now be invisible. This is true of some

nodes which are identified with nodes from other graphs. If the node is not on the

54

4.2. GENERATING LISTS OF NODES AND EDGES

dominant side then it should be invisible. Which graph is dominant in a connection

is indicated by the array graphDominate as described in Section 3.5.3. The nodes

which are not dominant have their visible attribute set to false.

The other change to be made is that now every node which is not a part of the

first graph in the list needs to be relative to another node. This means that the relTo

attribute of each node’s placement attribute should be changed to the node which

the two graphs are connected by.

After these changes have been made to the nodes, they are then translated so

that any identified nodes line up perfectly. They are also then translated again in

order to account for removing excess white space. Once that has been accomplished

the nodes are then flipped horizontally or vertically if the flags on the ComplexGraph

object are set to do so. This involves changing all of their y values and x values so

that the nodes are mirrored across the center lines, which lie on the x and y axes.

4.2.4 Generating Lists of Edges

Generating edges is another key part of setting up a graph for rendering or output.

Generating edges is a simple matter which involves taking the list of generated nodes

and the values from a SimpleGraph object’s secConnSec array and creating Path

objects which hold the proper nodes. To do this Grapha simply takes each entry in

the secConnSec array and, depending upon the string describing how to connect the

sections, creates Path objects.

For illustration I will go over a path-generating method. If the string retrieved

is “full” then Grapha knows that every node in one section (the sections to be

connected are specified by the indices on the secConnSec array as discussed in Sec-

tion 3.5.3) is connected to every node in the other section. For every node in both

arrays, Grapha creates a Path object which holds a reference to each node.

Once Grapha has found all of the edges needed for the graph (or in the case of a

compound graph, graphs) Grapha looks through the entire list of edges and deletes

duplicates. This is to keep Grapha from having dozens of hidden edges which were

generated twice. Following this, Grapha then passes through the array of edges and

55

CHAPTER 4. IMPLEMENTATION AND SOFTWARE EXPLANATION

the arrays weights and weightPos and pairs each Path object with a weight and a

weight position.

Finally Grapha needs to change some of the edge’s nodes due to the fact that some

nodes are invisible. The invisible nodes are known to all be identified with another

graph, this means that the edge should no longer travel to the node which is hidden

but rather to the dominant node from the other graph. These edges are searched for

and their nodes are changed to the proper new nodes.

Now that the lists of nodes and edges have both been generated, Grapha is ready

to use them to output the graph into various formats or render it to the screen. This

step is described in Section 4.3.

4.3 Rendering and Outputs

In this section, outputting graphs and rendering graphs to the screen will be examined.

Although both of these processes are quite simple, Grapha would not be a useful

program without them.

When a graph is going to be output for rendering Grapha’s task is simple. Most of

the difficult work was accomplished when the nodes and edges were generated. Now

Grapha simply has to traverse the lists of nodes and edges and convert them into the

proper format.

4.3.1 Rendering the Graph and Obtaining Raster-Based Im-

ages

In order for a graph to be rendered to the screen Grapha uses the HTML5 canvas tag.

This tag allows raster-based images to be drawn into the browser window. It does

this by providing JavaScript functions which edit pixels. These functions allow a

programmer to specify which pixels are to be coloured, where they should be coloured,

and how they should be coloured.

By using all of the attributes of a Node object Grapha has the ability to place a

node, fill it with a label and number, scale it to the proper size and determine whether

56

4.3. RENDERING AND OUTPUTS

or not it should be rendered. These things are all easily accomplished in JavaScript

by calling functions which act upon a context which is obtained from the canvas

object.

The functions named stroke, fillText, arc, lineTo, moveTo, fillStyle, and

strokeStyle are all important to using a canvas to draw images. A tutorial of how

to use these functions to draw graphics can be found at the w3schools website [24].

Due to the nature of this thesis it is not important to go into the details of how to

use each function. They manipulate the pixels in a canvas tag in a raster-based way

which is specified by Grapha using the attributes of a node or an edge.

Following all of the node rendering, edges are then drawn in a similar manner.

The lists of nodes and the lists of edges are traversed and each object found within

either list is drawn to the screen. This occurs until the entire graph has been drawn.

Once all of the nodes and edges have been rendered to the screen, the user may

wish to output the graph. For raster-based images JavaScript has a built in function

which makes this easy. The “toDataURL” function acts on any canvas element and

allows what has been drawn on that canvas to be output as a picture in another

format. The function is used as follows: canvas.toDataURL("image/" + dataType).

The word “dataType” is a variable which holds the name of the format into which

the graph will be output. Formats which are supported by the toDataURL function

include PNG, WebP, JPEG, and BMP; however, this support is not universal and

in some cases a browser might support some formats and not others. If a format is

not supported it will default to one of the supported formats and output that format

instead.

4.3.2 Obtaining Vector-Based Images

In order to output vector-based images Grapha has to work much harder. Vector-

based images usually are written using code and each type of vector-based image

usually has its own code which is used for rendering the image. How to generate

TikZ code and how to generate SVG code will be covered below.

57

CHAPTER 4. IMPLEMENTATION AND SOFTWARE EXPLANATION

TikZ [11] is a language for specifying different kinds of vector graphics for TeX [12],

LaTeX [6], or ConTeXt [20]. TikZ is a high level language which is used for drawing

many different types of diagrams.

When generating TikZ code there first needs to be some set up. The various

attributes of the tikzpicture will need to be set before we can tell TikZ where to

draw the nodes and edges. For a simple graph this set up only happens once, at the

beginning of the tikzpicture. This set up includes things such as the tikzpicture’s

xscale, yscale, and rotate attributes as well as the style and size of nodes.

Following is an example output for a basic bipartite graph. The attributes xscale,

yscale, rotate, and the style and size of nodes can all be inferred from the attributes

of a SimpleGraph object.

\begin{tikzpicture}[rotate=0,xscale=1,yscale=1, thin,

every node/.style={scale=1.00,minimum size=0cm,inner sep=0pt},

nodeStyle/.style={scale=1.00,shape=circle,minimum

size=1.89cm,inner sep=0.7pt,draw}]

\node (v0) at (0.0000,0.0000) [nodeStyle] {$v^{}_{0}$};

\node (v1) at (3.1341,0.0000) [nodeStyle] {$v^{}_{1}$};

\node (v2) at (0.0000,-4.5290) [nodeStyle] {$v^{}_{2}$};

\node (v3) at (3.1341,-4.5290) [nodeStyle] {$v^{}_{3}$};

\path (v0) edge[] node {$$} (v2);

\path (v0) edge[] node {$$} (v3);

\path (v1) edge[] node {$$} (v2);

\path (v1) edge[] node {$$} (v3);

\end{tikzpicture}

After the initial set up has been achieved, Grapha must then output code for each

of the nodes and each of the edges. This requires looping through the list of nodes

and the list of edges (generated from a graph) and pasting all of the code necessary

to draw those objects within the TikZ output. As seen above, the code for a node is

quite simple, and can all be obtained from the Node object. The x and y coordinates

use the xRel and yRel attributes of the node’s placement attribute and the name is

58

4.3. RENDERING AND OUTPUTS

a combination of the various other attributes. The labels for each node are derived

from the Node’s name and number attributes.

For compound graphs, generating TikZ code becomes slightly more complex. Be-

low is the TikZ output of a bipartite graph combined with a path graph. The path

graph is also rotated 30 degrees. The coinciding picture is Figure 4.3.

%This graph was designed for a particular text size.

%However, the graph

%borrows the text size from the document,

%any differences in size are due to this.

\begin{tikzpicture}[rotate=0, xscale=1,yscale=1, thin,

every node/.style={scale=1.00,minimum size=0cm,inner sep=0pt},

nodeStyle/.style={scale=1.000,shape=circle,minimum

size=1.134cm,inner sep=0.7pt,draw}]

\node (v0;0) at (0.0000,0.0000) [nodeStyle] {$v^{}_{0}$};

\node (v0;1) at (3.0507,0.0000) [nodeStyle] {$v^{}_{1}$};

\node (v0;2) at (0.0000,-3.1703) [nodeStyle] {$v^{}_{2}$};

\node (v0;3) at (3.0507,-3.1703) [nodeStyle] {$v^{}_{3}$};

\begin{scope}[rotate=-30, xscale=1, yscale=1,

every node/.style={scale=1.00,minimum size=0cm,inner sep=0pt},

nodeStyle/.style={scale=1.00,shape=circle,minimum size=1.1340cm,

inner sep=0.7pt,draw}]];

\node (Graph1Position) at ($(v0;1)+(0,0)$) [nodeStyle,

draw=none] {$$};

\node (v1;0) at ($(Graph1Position)+(0.0000,0.0000)$)

[nodeStyle,draw=none] {};

\node (v1;1) at ($(Graph1Position)+(2.7790,0.0000)$)

[nodeStyle] {$v^{}_{4}$};

\end{scope};

\path (v0;0) edge[] node {$$} (v0;2);

\path (v0;0) edge[] node {$$} (v0;3);

\path (v0;1) edge[] node {$$} (v0;2);

59

CHAPTER 4. IMPLEMENTATION AND SOFTWARE EXPLANATION

\path (v0;1) edge[] node {$$} (v0;3);

\path (v0;1) edge[] node {$$} (v1;1);

\end{tikzpicture}

v0 v1

v2 v3

v4

Figure 4.3: A bipartite graph with a path graph attached

As can be seen, every different basic graph requires the creation of a new

TikZ scope. In this manner, each basic graph can retain its unique attributes and ro-

tation. Following that, in order to have the basic graphs line up properly, every node

in a combined graph which is not part of the first basic graph has a calculated posi-

tion. This calculated position uses the relative coordinates of the node’s placement

attribute. It uses the relTo attribute as well as both the xRel and yRel attributes.

When combined these create a new node (the relTo node) in TikZ and then Grapha

proceeds to make all the rest of the nodes in that basic graph relative to that new

node.

In this way, every basic graph is translated into another scope in TikZ and then

its nodes and edges are written out in TikZ. These written nodes and edges are

contained within the basic graph’s scope in order to give the nodes and edges all of

the appropriate properties. This allows TikZ code to be generated gracefully and

readably. The generated code is easy to edit as well, so if a user wishes to make any

custom changes to his graph he could easily make them to the generated TikZ code.

In addition, if a complex graph is to be flipped horizontally or vertically, the

corresponding scale attribute (xScale or yScale) must be made negative when the

code is output for TikZ.

60

4.3. RENDERING AND OUTPUTS

SVG code is not as complicated to generate as TikZ code. This is due to the fact

that the SVG code utilizes the xRes and yRes portions of a Node object’s placement

attribute. This means that there is no scope or rotation attributes to be edited.

Instead, each node and edge is drawn as a separate entity and is unaffected by the

other code generated. A separate styling element is also generated for every node in

order to keep the resulting code easy to edit and quick to read.

To generate SVG code Grapha simply has to loop through every node and edge

and generate a bit of code for that item to be drawn. Below is a sample of SVG code

to generate a bipartite graph.

<svg version="1.1" height="244" width="193">

<circle cx="39.5" cy="39.50000000000003" r="35"

stroke="black" stroke-width="1" fill="none"/>

<g font-size="26" font="sans-serif" fill="black" stroke="none" >

<text x="27.5" y="46.00000000000003">v</text>

</g>

<g font-size="20" font="sans-serif" fill="black" stroke="none">

<text x="40.5" y="49.50000000000003" >0</text>

</g>

<circle cx="154.83333333333337" cy="39.5" r="35"

stroke="black" stroke-width="1" fill="none"/>

<g font-size="26" font="sans-serif" fill="black" stroke="none" >

<text x="142.83333333333337" y="46">v</text>

</g>

<g font-size="20" font="sans-serif" fill="black" stroke="none">

<text x="155.83333333333337" y="49.5" >1</text>

</g>

<circle cx="39.50000000000006" cy="206.16666666666666"

r="35" stroke="black" stroke-width="1" fill="none"/>

<g font-size="26" font="sans-serif" fill="black" stroke="none" >

<text x="27.500000000000057" y="212.66666666666666">v</text>

</g>

61

CHAPTER 4. IMPLEMENTATION AND SOFTWARE EXPLANATION

<g font-size="20" font="sans-serif" fill="black" stroke="none">

<text x="40.50000000000006" y="216.16666666666666" >2</text>

</g>

<circle cx="154.83333333333337" cy="206.16666666666666"

r="35" stroke="black" stroke-width="1" fill="none"/>

<g font-size="26" font="sans-serif" fill="black" stroke="none" >

<text x="142.83333333333337" y="212.66666666666666">v</text>

</g>

<g font-size="20" font="sans-serif" fill="black" stroke="none">

<text x="155.83333333333337" y="216.16666666666666" >3</text>

</g>

<line x1=39.500000000000014 y1=74.50000000000003

x2=39.50000000000004 y2=171.16666666666666 stroke="black"

stroke-width="1"/>

<rect x="39.50000000000003" y="111.83333333333334"

width="0" height="22"style="fill:rgb(255,255,255);"/>

<g font-size="20" font="sans-serif" fill="black"

text-anchor="middle">

<text x=39.50000000000003 y=127.83333333333334

fill="black"></text>

<line x1=59.41636240690613 y1=68.28087053021117

x2=134.91697092642724 y2=177.38579613645553

stroke="black" stroke-width="1"/>

<rect x="97.16666666666669" y="111.83333333333334"

width="0" height="22"style="fill:rgb(255,255,255);"/>

<g font-size="20" font="sans-serif" fill="black"

text-anchor="middle">

<text x=97.16666666666669 y=127.83333333333334

fill="black"></text>

<line x1=134.91697092642727 y1=68.28087053021116

x2=59.416362406906174 y2=177.3857961364555 stroke="black"

62

4.3. RENDERING AND OUTPUTS

stroke-width="1"/>

<rect x="97.16666666666671" y="111.83333333333333"

width="0" height="22"style="fill:rgb(255,255,255);"/>

<g font-size="20" font="sans-serif" fill="black"

text-anchor="middle">

<text x=97.16666666666671 y=127.83333333333333

fill="black"></text>

<line x1=154.83333333333337 y1=74.5 x2=154.83333333333337

y2=171.16666666666666 stroke="black" stroke-width="1"/>

<rect x="154.83333333333337" y="111.83333333333333"

width="0" height="22"style="fill:rgb(255,255,255);"/>

<g font-size="20" font="sans-serif" fill="black"

text-anchor="middle">

<text x=154.83333333333337 y=127.83333333333333

fill="black"></text>

</svg>

The resulting graph which is generated from the above code is pictured in Fig-

ure 4.4.

Figure 4.4: A picture of a bipartite graph in SVG

63

CHAPTER 4. IMPLEMENTATION AND SOFTWARE EXPLANATION

As can be seen, this way of generating SVG is not the most space efficient or the

easiest to read, but it is easy to edit. Due to the fact that every node and edge has

its own section of code and styling, a user can easily change them. Since all of the

code is generated by software very rapidly it seems appropriate to have the software

do the work and make it long yet easy to edit.

This SVG code can be used anywhere that SVG images are able to be interpreted

and rendered. The output of Grapha’s SVG is tuned for use in HTML but it should

be noted that with a few quick edits the code should be usable anywhere.

64

Chapter 5

Software Use

This chapter will provide a run through of the general usage scenario for Grapha on a

desktop computer. It will also provide examples of the various features which Grapha

has, and show examples of how to use them.

5.1 Overview Of The User Interface

There are two ways in which to run Grapha. The first way is to run Grapha from its

public site. This is currently hosted at: http://graph-drawing.acadiau.ca/. The

user can open Grapha via that link and run it with little difficulty. The other way

that Grapha can be run is via the user saving it to his computer. By right clicking

on the Grapha web page at any blank spot and clicking Save as... or Save Page

as... as seen in Figure 5.1, a user can save Grapha to his computer. A user will

then be prompted to give the program a name and a way to save it. The user may

select any name and the selection box should be set to show the words: “Webpage,

Complete”. After this the user can decide upon a location within his computer to

save the program to. Then in the future when that user wishes to run Grapha he may

simply open (for example by double-clicking) that saved icon. After this has been

performed, Grapha can be run off-line. Note that graphs saved to the browser’s cache

will not transfer when you make this save.

65

http://graph-drawing.acadiau.ca/

CHAPTER 5. SOFTWARE USE

Grapha also will run on any device which has a JavaScript engine; this means

that the software runs on Android and iOS (mobile operating systems) in addition to

desktop operating systems. The framework used for the design of Grapha provides it

with the ability to adapt the user interface to suit smaller devices better. Furthermore,

Grapha is still fully functional on a mobile device and is not overly difficult to use.

Figure 5.1: Downloading Grapha

Regardless of the method of running Grapha, the user interface is the same. The

user will be greeted by a five-tabbed single-page user interface. On every launch of

Grapha the user will be placed at the Make New Graphs tab. Every tab contains a

different set of functions which can be performed. The flow of the user interface is

left to right. The user does the most basic and simplest tasks in the leftmost tabs,

and as he works he will slowly move right until he is performing very complex tasks

(such as combining and rotating graphs).

The tabs available to the user are: Make New Graphs, Edit Basic Graphs, Save,

Load, and Delete Graphs, Combine Saved Graphs, and Edit Combined Graphs.

The Make New Graphs tab allows the user to begin generating basic graphs with a

few commands. The Edit Basic Graphs allows a user to perform many operations

(edit, save, load, output, change size, etc.) on basic graphs. The Save, Load, and

66

5.2. MAKE NEW GRAPHS

Delete Graphs tab allows a user to save his graph library, delete graphs, or load

libraries of graphs. The Combine Saved Graphs tab allows a user to combine two

basic graphs into a combined graph and the Edit Combined Graphs tab allows a user

to perform operations on combined graphs.

The user interface utilizes the current trend of flat user interfaces. This trend

specifies that 3D buttons, pop-out elements, or flashy graphics are not used in the

design of the user interface. Instead, colours, simple shapes, and a grid are used to

tell the user what to click on, and how to traverse the software. This design style has

seen most of its success on mobile platforms due to the fact that it lends itself well

to them and “smart” mobile platforms are currently the fastest moving and the most

frequently adopted platforms [14], [2]. This design was chosen due to the fact that

it promotes a simpler looking interface. Due to the fact that Grapha was designed

to be simple and quick the design paradigm pairs well with it. This design paradigm

can be seen on Android and iOS (where operating system 3D elements and flashy

textures have almost dissipated) and on Windows 8. Also included in this list are

many Google services such as Gmail [19].

Due to the fact that the developer for Grapha had little to no prior experience

in developing nice looking graphical user interfaces, a relatively straightforward de-

sign was created. Grapha’s interface is the result of trial and error, combined with

a lot of research and user feedback. Additionally, research was performed to find a

paradigm of user interface design which promoted simple styling and an easy to use

interface. The design paradigms of flat user interfaces were attempted and imple-

mented. The result is acceptable; however, it does not compete with the work of

professional designers.

5.2 Make New Graphs

In the tab named Make New Graphs the user will experience a screen with a few

options. Most of these options are meaningless upon the first launch of the program

because there have been no graphs generated yet. However, as indicated by the

red box, the button named Choose A Type To Begin is the first item that the user

67

CHAPTER 5. SOFTWARE USE

should turn his attention to. Upon clicking this box, the user will be presented with

Grapha’s repertoire of graph types as seen in Figure 5.2.

Figure 5.2: Choosing A Graph Type

The user then will click the type of graph that he wishes to generate. Once the

graph type has been selected, Grapha will present to the user the options which are

associated with that graph as seen in Figure 5.3.

The graph selected in the Figure 5.3 (bipartite) has a lot of options with regards

to its layout and supports all of Grapha’s possible features for a graph type. The

Complete? check box tells us whether or not Grapha should fill in all of the edges

on the specified graph. A user should check this box if he wishes the graph to be

connected. The Width and Height fields specify an integer which represents the

dimensions of the graph. The Node Size drop down is used for changing the size

of the vertices while the Text Size field is an integer which corresponds to the size

of the text within the graph. These attributes are all applied when the graph is

generated.

Also present are fields for specifying the attributes of each section of the graph.

A bipartite graph has two partitions or groups of vertices (referred to as sections in

the code of Grapha). In a bipartite graph, edges may not connect two vertices in

the same partition together (as per the definition of a bipartite graph). The first

two fields (whose default values are “5”) specify the number of vertices which each

partition of the bipartite graph will have. Following those fields the user can see a

Label The Vertices? check box. This tells Grapha whether or not the graph to be

generated will have its vertices labelled with the number and label below. At the

68

5.2. MAKE NEW GRAPHS

Figure 5.3: Options Of Generating A Graph

bottom of the page are the text fields which allow the user to define how a partition

will be labelled. Each partition has a label name and a number to begin at. The

label name can be any text and will show up in the center of the vertex, along with a

number. The number field specifies what the first vertex number in the partition will

be (Grapha automatically increments this number as it draws nodes for a partition).

69

CHAPTER 5. SOFTWARE USE

Users should feel free to experiment with these options to get a better understanding

of how the options can interact with graphs to be generated.

While changing the values of any number box in Grapha, the user has two options.

The first is to input a number as usual by typing it into the box (or filling it out via

voice or some other method). The second is to use the arrow keys (up/down) to

automatically increment or decrement any number field.

Finally, once the user has detailed a graph to his specifications, he should click the

Generate Graph button. Upon clicking this, the user will automatically be taken to

the “Edit Basic Graphs” tab where his graph has been generated and where there

are more options available.

5.3 Edit Basic Graphs

If a user enters the Edit Basic Graphs tab without generating a graph, he will see

a very minimalistic view. In order for the user to bring up a graph that he wants to

edit he should click on the Load Graph drop down. This will allow the user to load a

graph and Grapha to populate the Edit Basic Graphs tab with the options available

to that graph (as shown in Figure 5.4). It will also show the user the generated graph

in the blue outlined box at the bottom of the page. The other way in which a user

can enter this tab is by clicking the Generate Graph button on the first tab, once he

has populated all of the specifying fields. The user will then be taken to the second

tab where the contents have been changed to show the user his generated graph and

the options pertaining to that graph.

Either way, once a user has loaded a graph he will be able to perform a few tasks.

First of all, the user can edit his graph. All of the options available on the first

page (with the exemption of graph type) are available to be edited here. Again, the

user may use the arrow keys on his keyboard to edit any number field. When the

arrow keys are used the graph is automatically updated, this allows the user to edit

his graph on the fly. The user will also note that there are a few additional options

available, the first of which is the option to save his graph. At any time the user can

decide to save a graph to his cache; this means that the graph will be available from

70

5.3. EDIT BASIC GRAPHS

Figure 5.4: Editing Basic Graphs

any load menu where basic graphs can be loaded. The name which is given to the

saved graph is specified by the Graph Name: labelled text box which is located on

this page.

The second new option is the ability to edit weights. The user can either edit all

of the edge weights at once with the buttons in the Weight Options box or the user

can edit each edge’s weight individually by clicking on a weight and dragging it or by

double clicking on an edge. Double clicking will bring up a prompt which will ask a

user what new weight that he would like. Clicking on a weight and dragging it in any

direction will allow a user to change where the weight is drawn relative to its edge.

The third new option is the ability to output the graph in a specified format (such

as PNG, JPEG, TikZ code, etc.). The preview graph in the blue box at the bottom

of the tab shows the user a representation of what his graph looks like. This image

corresponds closely to the graph which will be seen by any output method.

71

CHAPTER 5. SOFTWARE USE

Also added to this page is the ability to rotate a graph. The user can place any

rotation into this box to have the graph rotate around its center. After the user has

changed any options located on this page, clicking the update button will update the

graph in Grapha’s code and allow the user to preview his updated graph. However,

if the user used the arrow keys (up/down) to edit a number box then the graph will

automatically be updated every time the number changes. After any edits the graph

may be saved under any name for use later, or output now for use in the user’s desired

program. Cached graphs will be stored in memory until the user clears his browser

cache or deletes the graph manually. This means that the graph is persistent across

multiple launches of the software.

5.4 Save, Load, and Delete Graphs

On the Save, Load, and Delete Graphs tab the user has the ability to save his

graph library. This can be done by clicking the button named Save All Graphs As

A File, as seen in Figure 5.5. This includes every graph, both basic or complex,

that the user has in his cache. Saving a graph library will save a file to the user’s

specified location (hard-drive, USB stick, etc.) which contains all of the user’s graphs.

Grapha can later read this file and load all of the saved graphs back into the user’s

cache. This feature also allows multiple users to share graph libraries across multiple

computers. It saves the file under the name that the user has entered into the box

above the button. The default name contained within that box is “Library.txt”.

The second feature of this tab is the ability to load a graph library. This is

done slightly differently depending upon the browser that the user is running Grapha

within and under which operating system the user is running the browser. In any

case, the ability to load a graph library is located in the blue box labelled Choose

A Library To Load. Within that blue box, the user should click on a button which

will allow him to begin browsing his file system for the file that he would like to load.

Once a user has chosen this file, he will be presented with two options: Overwrite

and Merge. If the user chooses the overwrite option, all of his cached graphs will be

replaced with the library stored in his chosen file. If the user wishes to keep all of his

72

5.5. COMBINE SAVED GRAPHS

Figure 5.5: Save, Load, and Delete Graphs

graphs which are in cache and simply add the graphs from the file into his cache, the

user should click the button labelled Merge.

Finally, this tab allows the user to delete graphs from his cache. When a user

clicks the Delete Graphs From Cache drop down button, a list of the names of all

of his saved graphs appears as seen in the picture above. After that, the user can

simply click on any graph which he would like to delete, then in the confirmation box,

click ok.

5.5 Combine Saved Graphs

In the Combine Saved Graphs tab the user has the ability to identify any graphs in

his cache with each other. As seen in Figure 5.6, the tab has very few options. It has

two drop down menus for loading graphs as well as an option to tell Grapha which

graph is to be used on top, i.e., which graph gets to keep its vertex.

73

CHAPTER 5. SOFTWARE USE

Figure 5.6: Combining Graphs

Upon clicking either of the load menus the user will be presented with a graph-

ical representation of every graph which he has saved within his cache, as seen in

Figure 5.7.

Once this representation has been rendered, the user can browse and click on the

graphs that he would like to combine. Clicking upon one of these thumbnails will

bring the graph into full view. Once a user has loaded a graph on each side of the

screen (one for each load menu) the user can specify how they are to be combined.

His first option is to simply combine them: this will simply put both graphs side

by side. The second option is to click a vertex of each graph. This will tell Grapha

which two vertices are to be identified when the graphs are combined. In addition,

the user should click the radio button which corresponds to his preferred dominant

graph. If the user would like the right graph to retain its identified vertex then the

radio button Right on Top should be checked. Otherwise the left graph will retain

its vertex during the combining process.

In any case, when the user clicks combine graph while two graphs have been loaded,

the program automatically turns the two graphs into a larger compound graph. The

user will automatically be taken to the Edit Combined Graphs tab and his graph

will be shown to him in that tab’s blue box at the bottom of the screen.

74

5.6. EDIT COMBINED GRAPHS

Figure 5.7: Loading Graphs To Combine

5.6 Edit Combined Graphs

Similar to how the Edit Basic Graphs tab worked, the Edit Combined Graphs tab

(which is the rightmost tab) can be entered in two ways. The first way is by combining

two graphs on the previous tab. Doing so will automatically take the user to the last

tab and generate a preview of his combined graph. In addition, the user could enter

this tab on his own. When arriving at the Edit Combined Graphs tab in this manner

the user will need to click the drop down named Load Compound Graph in order to

begin using this tab.

75

CHAPTER 5. SOFTWARE USE

Clicking Load Compound Graph will show the user a list of all of the cached com-

pound graphs that he currently has saved in Grapha. The user can then click which

graph that he would like to edit. Once the user has clicked this graph the tab will be

populated with a preview of his graph. The user can now begin to edit this compound

graph.

The first way in which a user can edit his compound graph is by clicking upon

a basic graph contained within the compound graph. This will populate some fields

with all of the options available to edit that basic graph. These options are labelled

Highlighted Graph Controls, as seen in Figure 5.8. The second way in which a

user can edit a compound graph is by clicking the Edit Entire Graph button which

is sitting above the preview. Clicking this button will reveal a number of options that

allow a user to edit the entire compound graph at once. These options are contained

within a blue box labelled Entire Graph Controls, as seen in Figure 5.8.

Figure 5.8: Edit Combined Graphs

76

5.6. EDIT COMBINED GRAPHS

Within the Highlighted Graph Controls box a user can edit all of the properties

of a single graph. The only things not editable here are the edge weights. Having

edge weights editable here would have hurt the flow of the software and also would

have cluttered the user interface too much. Other than that most of the options seen

within that box are the same as the options seen in the Edit Basic Graphs tab.

The second box seen on the screen named Entire Graph Controls holds options

which will manipulate the whole compound graph at once. The first option here is

Label Vertices?. This check box will turn on or off the vertex labelling for every

graph within the compound graph. The next set of options for the entire graph

are horizontal and vertical flip. Clicking either of these options will flip the graph

horizontally or vertically, respectively.

Also available is a convenient Auto Number button. This button causes Grapha to

traverse the entire compound graph and number each vertex in an increasing fashion.

It first prompts the user for the lowest number in the vertex numbering sequence.

This allows the graph to be consistent (no two vertices with the same number) and

look neater. It is a quick way to edit everything at once. The final option in the

Entire Graph Controls repertoire is the ability to change the text size and node

size of the entire graph at once. Clicking this drop down menu will allow the user to

select a new size for all the the compound graph’s vertices.

In addition to editing the properties of the graph, the Edit Combined Graphs tab

also has the ability to output, preview, and save the graph, just as the Edit Basic

Graph tab did. The “save” here is a save to cache.

77

CHAPTER 5. SOFTWARE USE

78

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In Section 3.1 the goals of Grapha were laid out. The software has achieved all of those

goals and has a few extras as well. Grapha can generate a repertoire of basic graphs

very easily with only a few interactions needed from the user. Grapha is quick to use

and has many advanced features such as combining graphs. Many of the advanced

features only require a few clicks and can all be done quickly. The software is easy to

use due to the user interface being self-explanatory and straight forward. In addition,

Grapha is quick to learn because it is not complicated by having small and specific

manipulations built in. Grapha also has many different output formats in order for

the user to obtain his graph for use in other programs. These different output formats

allow a user to obtain his graph in one of many different raster-based images or one

of a few vector-based formats. Finally, Grapha is portable. It runs on iOS, Android

(both with slightly reduced usability and slightly fewer features), Windows, Linux,

and Mac OS. Furthermore, Grapha is able to be hosted on-line (allowing it to be run

without being installed) and off-line (so that the user does not require internet access

in order to use the software). This gives Grapha many different options with regards

to how it is run on a user’s computer.

Grapha achieved the goals set out for it in a very generous manner. With that in

mind Grapha fills a gap in graph-generating software. It reduces the amount of time

79

CHAPTER 6. CONCLUSION AND FUTURE WORK

that a graph theorist needs to use when making basic graphs look professional. It

allows these graphs to be tweaked within it, or output in the user’s desired format

for specific editing. The modularity of Grapha’s most crucial pieces (graph types

and output methods) is designed to make it long-lasting and able to cater to niche

markets. Grapha also will run on many more devices than most other solutions and

can be run on-line or off-line. These things place Grapha amongst the other software

solutions as a time-saving, modular, and highly compatible solution to generating

graphs. A version of Table 2.1 has been updated and is shown in Table 6.1. It was

updated in order to include Grapha in the list of software.

Table 6.1: Tables of functionality for researched software and Grapha.

(a) Supported platforms and portability

Software Desktop Mobile Installed On-line Off-line
Graph Creator 3 7 7 7 3

Creately 3 7 3 3 3

GraphTea 3 7 3 7 3

GraphViz 3 7 3 7 3

Gephi 3 7 3 7 3

Grapha 3 3 7 3 3

(b) Outputs

Software Raster-Based Output LaTeX Output SVG Output
Graph Creator 7 7 7

Creately 3 7 3

GraphTea 3 3 7

GraphViz 3 7 3

Gephi 3 7 3

Grapha 3 3 TikZ 3

(c) Ease and speed of use

Software Graph Generation Specific Editing Learning Curve Time to Use
Graph Creator 7 3 minimal average

Creately 7 3 average average
GraphTea 3 3 average minimal
GraphViz 7 With Work steep maximal

Gephi 7 3 steep average
Grapha 3 7 minimal minimal

80

6.2. FUTURE WORK

During the development of Grapha many of the methods used to create the soft-

ware (which were decided upon in the design stage) worked very well. HTML5, CSS3,

and JavaScript were very good programming language choices for the software. They

enabled many of the different features of Grapha to be implemented smoothly and

across many platforms.

Midway though the development of Grapha a problem was discovered. The user

interface was too static and did not change dynamically enough based upon the user’s

device or the programmer’s desired changes. This made changing the user interface

the most time consuming part of working on Grapha. A future programmer would

do well to make the user interface more modular and allow future programming to

be done quicker.

6.2 Future Work

The current version of Grapha achieves the goals which were set out for it. It is a

full software suite which allows for the quick and easy generation of basic graphs

or combinations of basic graphs. Despite this, Grapha can still improve in many

different ways. The most prominent way that it can improve is in the addition of

plug-ins for the software. In addition, the many modular properties that Grapha has

can be expanded upon.

One idea for future work would be for a programmer to expand the number of basic

graphs which Grapha implements. Right now the software has a simple repository

of some common basic graphs. However, one can be certain that no group of people

could think of every possible basic graph to be implemented. The more basic graphs

that the software has the more reach that it has. It would also give Grapha a wider

audience and allow it to be more powerful in terms of which graphs can be created

and what can be accomplished by combining certain graphs together.

Related to the last suggestion is the idea of expanding what a graph type object

has the capability to do. Right now the user interface cannot be directly changed

by the graph type objects; instead, the user interface is automatically changed based

upon the values that the GraphType object holds within its arrays. The ability to

81

CHAPTER 6. CONCLUSION AND FUTURE WORK

change the user interface and have a larger number of (and more descriptive) input

fields could be quite valuable to niche graphs or families of graphs which do not use

sections filled with vertices but rather use something along the lines of columns and

rows.

Another area for future work would be to increase the number of outputs that

Grapha supports. Grapha’s number of outputs right now is powerful yet small. The

software has many raster-based formats but only two vector-based formats for output.

Although the currently implemented formats are judged to be very useful formats, a

future programmer could easily expand upon them to increase the number of output

formats. This would once again allow Grapha to appeal to a wider audience and

even fill some niche gaps in graph generation, by supporting scarce or obscure output

formats.

The next case for future work includes increasing the number of ways in which

Grapha can combine graphs. It was brought up during the development of the pro-

gram that having a way in which edges could be identified would be very useful for

the graph theorist. In addition, one could think of many different ways in which two

graphs could be combined. A future programmer would need to learn about the inner

workings of Grapha and learn about the code written for the software in order to add

additional connection types. Despite this, the functionality for different connection

types has been worked into the program already. Therefore, it would not take a

reworking of the entire program to add more connection types. Rather, the program-

mer would be adding more code to Grapha which would enable users to identify two

graphs with their new desired connection type.

Currently, Grapha allows the user to edit or manipulate the various aspects of

combined graphs. Although Grapha is to be used for quick and easy generation of

graphs, an ability to group together many different basic graphs within the “Edit

Combined Graphs” tab would be a good feature to have. This would allow the user

to make many edits to a large number of basic graphs at once. In addition, the ability

to edit more parameters regarding the entire compound graph would also be useful.

Attributes such as rotation on the entire compound graph could be implemented.

82

6.2. FUTURE WORK

Finally Grapha could use some plug-ins which enhance the functionality and gran-

ularity of the generated graphs. Right now there is no plug-in architecture in Grapha,

so an interested developer would first need to create some plug-in architecture. Af-

ter creating such functionality, plug-ins could be developed for Grapha which allow

graphs from the program to be edited on a vertex-by-vertex or edge-by-edge basis.

Future plug-ins could allow for the custom movement or colouring of nodes or even

allow for the ability to have specific edges and nodes to have unique styles. Possible

features include removing nodes, edges or sections of graphs and adding new edges,

nodes, or sections of graphs. These things were excluded from the original specifica-

tion due to the fact that Grapha was meant to be fast and lightweight. Although this

goes against the quick and easy graph-generating work flow which Grapha encourages,

it might be very useful for a user to take his generated graph and (inside Grapha)

edit the fine details of the graph in the same program. This way a user can have the

graph suit his needs perfectly at the time of outputting it. In addition, the feature of

editing multiple basic graphs which are part of a compound graph at once would be

a great feature for Grapha to support. This way making edits to compound graphs

would be quicker for the user.

Some future plug-ins could also allow for alternate ideas regarding each output.

For instance, the TikZ output could have the option to only use coordinates instead

of using scope. This would make the TikZ easier to read, yet harder to edit if you are

an advanced user of TikZ.

Most of these areas of future work were thought of throughout Grapha’s devel-

opment and, due to that fact, the software was written in a way which supports

expansion. In cases where it was possible, Grapha was made to be modular and in

all cases, functions from Grapha (which do not rely on the user interface) were made

to work independently of each other.

83

CHAPTER 6. CONCLUSION AND FUTURE WORK

84

Bibliography

[1] Creately. Creately Website, February 2014. URL http://creately.com/.

[2] Smartphone users worldwide will total 1.75 billion in 2014,

March 2014. URL http://www.emarketer.com/Article/

Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536.

[3] Alexandru T. Balaban. Applications of graph theory in chemistry. Journal

of Chemical Information and Computer Sciences, 25(3):334–343, 1985. URL

http://www.ijaiem.org/volume1Issue2/IJAIEM-2012-10-11-017.pdf.

[4] Nathann Cohen. Sage in graph theory. ALGO Research Group, February 2014.

URL http://www.steinertriples.fr/ncohen/tut/Graphs/.

[5] E. Estrada. Graph and Network Theory in Physics. ArXiv e-prints, February

2013.

[6] Michel Goossens Frank, Mittelbach. The TAXTEX Companion. Addison Wesley,

2004.

[7] Gephi. Graphi makes graphs handy. Gephi Website, February 2014. URL

https://gephi.org/.

[8] Andy Graulund. GraphJS, February 2014. URL http://dl.

dropboxusercontent.com/u/4189520/GraphJS/graphjs.html.

[9] NCTM Illuminations. Graph creator. NCTM Illuminations Website, February

2014. URL http://illuminations.nctm.org/Activity.aspx?id=3550.

85

http://creately.com/
http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536
http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536
http://www.ijaiem.org/volume1Issue2/IJAIEM-2012-10-11-017.pdf
http://www.steinertriples.fr/ncohen/tut/Graphs/
https://gephi.org/
http://dl.dropboxusercontent.com/u/4189520/GraphJS/graphjs.html
http://dl.dropboxusercontent.com/u/4189520/GraphJS/graphjs.html
http://illuminations.nctm.org/Activity.aspx?id=3550

BIBLIOGRAPHY

[10] Ian Jacobs. HTML5 Definition Complete. W3C Website, February 2014. URL

http://www.w3.org/2012/12/html5-cr.

[11] Stefan Kottwitz Kjell Magne Fauske. TEXample.net, March 2014. URL http:

//www.texample.net/tikz/.

[12] Donald KNUTH. The TEXbook. Addison Wesley, 1996.

[13] Paul Krill. Javascript creator ponders past, future. InfoWorld,

February 2014. URL http://www.infoworld.com/d/developer-world/

javascript-creator-ponders-past-future-704.

[14] Taylor Martin. User interfaces are going flat. what comes after that?, March 2014.

URL http://pocketnow.com/2013/06/05/flat-user-interface-design.

[15] AT&T Labs Research and Contributors. Documentation. Graphviz website,

February 2014. URL http://www.graphviz.org/Documentation.php.

[16] AT&T Labs Research and Contributors. Graphviz. Graphviz website, February

2014. URL http://www.graphviz.org/Home.php.

[17] Anita Singhrova Suman Deswal. Application of graph theory in communication

networks. Journal of Application or Innovation in Engineering & Management, 1

(2):66–70, 2012. URL http://pubs.acs.org/doi/abs/10.1021/ci00047a033.

[18] ECMA International Sun Microsystems. ECMA Script Documentation. ex-

mascript website, February 2014. URL http://www.ecmascript.org/docs.

php.

[19] Adrian Taylor. Flat and thin are in. Smashing Magazine Web-

site, February 2014. URL http://www.smashingmagazine.com/2013/09/03/

flat-and-thin-are-in/.

[20] CONTEXT Team. Context garden, March 2014. URL http://wiki.

contextgarden.net/Main_Page.

86

http://www.w3.org/2012/12/html5-cr
http://www.texample.net/tikz/
http://www.texample.net/tikz/
http://www.infoworld.com/d/developer-world/javascript-creator-ponders-past-future-704
http://www.infoworld.com/d/developer-world/javascript-creator-ponders-past-future-704
http://pocketnow.com/2013/06/05/flat-user-interface-design
http://www.graphviz.org/Documentation.php
http://www.graphviz.org/Home.php
http://pubs.acs.org/doi/abs/10.1021/ci00047a033
http://www.ecmascript.org/docs.php
http://www.ecmascript.org/docs.php
http://www.smashingmagazine.com/2013/09/03/flat-and-thin-are-in/
http://www.smashingmagazine.com/2013/09/03/flat-and-thin-are-in/
http://wiki.contextgarden.net/Main_Page
http://wiki.contextgarden.net/Main_Page

BIBLIOGRAPHY

[21] GraphTea Team. Graphtea. GraphTea Website, February 2014. URL http:

//graphtheorysoftware.com/.

[22] Sage Team. Sage. Sage website, February 2014. URL http://www.sagemath.

org/.

[23] Zurb Team. Foundation, February 2014. URL http://foundation.zurb.com/.

[24] w3schools. HTML5 Canvas. w3schools website, February 2014. URL http:

//www.w3schools.com/html/html5_canvas.asp.

[25] w3schools. CSS Tutorial. w3schools.com, February 2014. URL http://www.

w3schools.com/css/.

87

http://graphtheorysoftware.com/
http://graphtheorysoftware.com/
http://www.sagemath.org/
http://www.sagemath.org/
http://foundation.zurb.com/
http://www.w3schools.com/html/html5_canvas.asp
http://www.w3schools.com/html/html5_canvas.asp
http://www.w3schools.com/css/
http://www.w3schools.com/css/

	Abstract
	Acknowledgments
	Introduction And Problem
	Making Life Easier
	Problems With Generating Graphs Quickly
	The Goal Of Grapha
	Basic Graphs
	Manipulating Graphs
	The Details Of A Graph

	Compound Graphs
	User Interface
	Graph Knowledge
	Basic Graph Examples
	Developing Grapha

	Research And Related Solutions
	Design And Software Engineering
	Goals of Grapha
	Programming Languages
	HTML5
	CSS
	JavaScript

	Cross-Platform Code
	Language Choices
	Saving and its Challenges

	Object-Oriented Code
	Graph-Related Objects
	The GraphType Object
	The SimpleGraph Object
	The ComplexGraph Object

	Implementation and Software Explanation
	Manipulating Graphs
	How Objects Are Used, Saved, and Loaded
	Creating, Saving, and Editing a Basic Graph
	Combining and Editing Compound Graphs

	Generating Lists of Nodes and Edges
	The Node and Path objects
	Lists of Nodes from Basic Graphs
	Lists of Nodes from Compound Graphs
	Generating Lists of Edges

	Rendering and Outputs
	Rendering the Graph and Obtaining Raster-Based Images
	Obtaining Vector-Based Images

	Software Use
	Overview Of The User Interface
	Make New Graphs
	Edit Basic Graphs
	Save, Load, and Delete Graphs
	Combine Saved Graphs
	Edit Combined Graphs

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

